Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Ther ; 31(11): 3176-3192, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37766429

ABSTRACT

The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.


Subject(s)
Enzyme Inhibitors , NEDD8 Protein , Neoplasms , Oncolytic Virotherapy , Animals , Humans , Mice , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Interferons , NEDD8 Protein/antagonists & inhibitors , NEDD8 Protein/genetics , Neoplasms/drug therapy
3.
Mol Ther Oncolytics ; 25: 146-159, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35572196

ABSTRACT

Oncolytic virotherapy is a clinically validated approach to treat cancers such as melanoma; however, tumor resistance to virus makes its efficacy variable. Compounds such as sodium orthovanadate (vanadate) can overcome viral resistance and synergize with RNA-based oncolytic viruses. In this study, we explored the basis of vanadate mode of action and identified key cellular components in vanadate's oncolytic virus-enhancing mechanism using a high-throughput kinase inhibitor screen. We found that several kinase inhibitors affecting signaling downstream of the epidermal growth factor receptor (EGFR) pathway abrogated the oncolytic virus-enhancing effects of vanadate. EGFR pathway inhibitors such as gefitinib negated vanadate-associated changes in the phosphorylation and localization of STAT1/2 as well as NF-κB signaling. Moreover, gefitinib treatment could abrogate the viral sensitizing response of vanadium compounds in vivo. Together, we demonstrate that EGFR signaling plays an integral role in vanadium viral sensitization and that pharmacological EGFR blockade can counteract vanadium/oncolytic virus combination therapy.

4.
Commun Biol ; 3(1): 254, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444806

ABSTRACT

We have demonstrated that microtubule destabilizing agents (MDAs) can sensitize tumors to oncolytic vesicular stomatitis virus (VSVΔ51) in various preclinical models of cancer. The clinically approved T-DM1 (Kadcyla®) is an antibody-drug conjugate consisting of HER2-targeting trastuzumab linked to the potent MDA and maytansine derivative DM1. We reveal that combining T-DM1 with VSVΔ51 leads to increased viral spread and tumor killing in trastuzumab-binding, VSVΔ51-resistant cancer cells. In vivo, co-treatment of VSVΔ51 and T-DM1 increased overall survival in HER2-overexpressing, but trastuzumab-refractory, JIMT1 human breast cancer xenografts compared to monotherapies. Furthermore, viral spread in cultured HER2+ human ovarian cancer patient-derived ascites samples was enhanced by the combination of VSVΔ51 and T-DM1. Our data using the clinically approved Kadcyla® in combination with VSVΔ51 demonstrates proof of concept that targeted delivery of a viral-sensitizing molecule using an antibody-drug conjugate can enhance oncolytic virus activity and provides rationale for translation of this approach.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/therapy , Drug Synergism , Oncolytic Virotherapy/methods , Rhabdoviridae/genetics , Animals , Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Combined Modality Therapy , Female , Humans , Maytansine/administration & dosage , Mice , Mice, Nude , Trastuzumab/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Biometals ; 32(3): 545-561, 2019 06.
Article in English | MEDLINE | ID: mdl-31209680

ABSTRACT

Oncolytic viruses rewire the immune system and can lead to long-lasting antitumor defenses against primary and metastatic tumors. However, results from clinical studies have shown heterogeneity in responses suggesting that multiplexed approaches may be necessary to consistently generate positive outcomes in patients. To this end, we explored the combination of oncolytic rhabdovirus VSV∆51 with vanadium(V) dipicolinate derivatives, which have already been explored for their antidiabetic properties in animal models. The combination of vanadium-based dipicolinate compounds with VSV∆51 significantly increased viral replication and cytotoxicity in the human renal cell carcinoma cell line 786-0. The effects of three vanadium(V)-dipicolinate coordination complexes ([VO2dipic]-, [VO2dipic-OH]- and [VO2dipic-Cl]- with -OH or -Cl in the para position) were compared to that of the simple salts using spectroscopy and speciation profiles. Like the vanadate salts and the vanadyl cation, all dioxovanadium(V) dipicolinate complexes tested were found to increase viral infection and cytotoxicity when used in combination with VSV∆51. Viral sensitization is dependent on the vanadium since free dipicolinate ligands exerted no effect on viral infection and viability. The ability of these complexes to interact with interfaces and the stability of the complexes were evaluated under physiological conditions. Results indicate that these complexes undergo hydrolysis in cell culture media thereby generating vanadate. The vanadium dipicolinate derivatives in the context of immunovirotherapy shares similarities with previous studies exploring the antidiabetic properties of the compounds. The synergy between vanadium compounds and the oncolytic virus suggests that these compounds may be valuable in the development of novel and effective pharmaco-viral therapies.


Subject(s)
Antiviral Agents/pharmacology , Coordination Complexes/pharmacology , Oncolytic Virotherapy , Oncolytic Viruses/drug effects , Picolinic Acids/pharmacology , Vanadium Compounds/pharmacology , Virus Diseases/therapy , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Structure , Picolinic Acids/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured , Vanadium Compounds/chemistry , Virus Diseases/drug therapy
6.
Sci Transl Med ; 10(425)2018 01 24.
Article in English | MEDLINE | ID: mdl-29367345

ABSTRACT

Resistance to oncolytic virotherapy is frequently associated with failure of tumor cells to get infected by the virus. Dimethyl fumarate (DMF), a common treatment for psoriasis and multiple sclerosis, also has anticancer properties. We show that DMF and various fumaric and maleic acid esters (FMAEs) enhance viral infection of cancer cell lines as well as human tumor biopsies with several oncolytic viruses (OVs), improving therapeutic outcomes in resistant syngeneic and xenograft tumor models. This results in durable responses, even in models otherwise refractory to OV and drug monotherapies. The ability of DMF to enhance viral spread results from its ability to inhibit type I interferon (IFN) production and response, which is associated with its blockade of nuclear translocation of the transcription factor nuclear factor κB (NF-κB). This study demonstrates that unconventional application of U.S. Food and Drug Administration-approved drugs and biological agents can result in improved anticancer therapeutic outcomes.


Subject(s)
Dimethyl Fumarate/pharmacology , NF-kappa B/metabolism , Oncolytic Virotherapy , Oncolytic Viruses/physiology , Animals , Cell Line, Tumor , Cytokines/biosynthesis , Esters/pharmacology , Fumarates/pharmacology , Glutathione/metabolism , Humans , Interferon Type I/pharmacology , Maleates/pharmacology , Mice, Inbred BALB C , Mice, Inbred C57BL , Oncolytic Viruses/drug effects , Xenograft Model Antitumor Assays
7.
Mol Ther ; 26(1): 56-69, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29175158

ABSTRACT

Oncolytic viruses (OV) are an emerging class of anticancer bio-therapeutics that induce antitumor immunity through selective replication in tumor cells. However, the efficacy of OVs as single agents remains limited. We introduce a strategy that boosts the therapeutic efficacy of OVs by combining their activity with immuno-modulating, small molecule protein tyrosine phosphatase inhibitors. We report that vanadium-based phosphatase inhibitors enhance OV infection in vitro and ex vivo, in resistant tumor cell lines. Furthermore, vanadium compounds increase antitumor efficacy in combination with OV in several syngeneic tumor models, leading to systemic and durable responses, even in models otherwise refractory to OV and drug alone. Mechanistically, this involves subverting the antiviral type I IFN response toward a death-inducing and pro-inflammatory type II IFN response, leading to improved OV spread, increased bystander killing of cancer cells, and enhanced antitumor immune stimulation. Overall, we showcase a new ability of vanadium compounds to simultaneously maximize viral oncolysis and systemic anticancer immunity, offering new avenues for the development of improved immunotherapy strategies.


Subject(s)
Genetic Vectors/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Vanadium Compounds/pharmacology , Animals , Biomarkers , Chemokine CXCL9/metabolism , Combined Modality Therapy , Cytokines/metabolism , Disease Models, Animal , Female , Genetic Therapy/methods , Humans , Immunotherapy , Inflammation Mediators/metabolism , Interferon Type I/metabolism , Interferon-gamma/metabolism , Lymphocyte Activation/immunology , Mice , Mortality , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
8.
Int J Cancer ; 141(6): 1257-1264, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28568891

ABSTRACT

The poor prognosis of patients with advanced bone and soft-tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre-clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side-by-side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes-simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long-lasting cures in sarcoma-bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1-based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy.


Subject(s)
Oncolytic Virotherapy/methods , Rhabdoviridae/physiology , Sarcoma/therapy , Sarcoma/virology , Animals , Bone Neoplasms/therapy , Bone Neoplasms/virology , Cell Line, Tumor , Dogs , Female , Humans , Mice , Mice, Inbred BALB C , Osteosarcoma/therapy , Osteosarcoma/virology , Sarcoma, Ewing/therapy , Sarcoma, Ewing/virology , Sarcoma, Synovial/therapy , Sarcoma, Synovial/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...