Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Commun Biol ; 7(1): 941, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097626

ABSTRACT

Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Extracellular Vesicles , Microalgae , Extracellular Vesicles/metabolism , Animals , Microalgae/metabolism , Mice , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Caenorhabditis elegans/metabolism , Biocompatible Materials/chemistry , Chlorophyta/metabolism , Bone and Bones/metabolism , Tropism
2.
J Extracell Biol ; 3(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38405579

ABSTRACT

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

3.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326288

ABSTRACT

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Exosomes/metabolism , Biological Transport , Biomarkers/metabolism , Phenotype
4.
Adv Healthc Mater ; 13(19): e2303941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38270559

ABSTRACT

The evolution of extracellular vesicle (EV) research has introduced nanotechnology into biomedical cell communication science while recognizing what is formerly considered cell "dust" as constituting an entirely new universe of cell signaling particles. To display the global EV research landscape, a systematic review of 20 364 original research articles selected from all 40 684 EV-related records identified in PubMed 2013-2022 is performed. Machine-learning is used to categorize the high-dimensional data and further dissected significant associations between EV source, isolation method, cargo, and function. Unexpected correlations between these four categories indicate prevalent experimental strategies based on cargo connectivity with function of interest being associated with certain EV sources or isolation strategies. Conceptually relevant association of size-based EV isolation with protein cargo and uptake function will guide strategic conclusions enhancing future EV research and product development. Based on this study, an open-source database is built to facilitate further analysis with conventional or AI tools to identify additional causative associations of interest.


Subject(s)
Extracellular Vesicles , Machine Learning , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Animals
5.
Environ Pollut ; 343: 123150, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38103711

ABSTRACT

Plastic and microplastics, including polyethylene (PE), polypropylene (PP), and polystyrene (PS), are major contributors to environmental pollution. However, there is a growing recognition of the need to investigate a wider range of plastic polymers to fully understand the extent and impacts of plastic pollution. This study focuses on the comprehensive characterization of true-to-life nanoplastics (T2LNPs) derived from polyethylene terephthalate (PET) and polyamide (PA) to enhance our understanding of environmental nanoplastics pollution. T2LNPs were produced through cryogenic mechanical fragmentation of everyday items made from these polymers. A solid methodological framework incorporating various characterization techniques was established. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA) were employed to study the chemical composition and confirm the absence of chemical modifications possibly occurring during fragmentation. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze the morphology of the T2LNPs. Additionally, AFM image analysis compared to dynamic light scattering (DLS) measurements provided insights into the size distribution and the stability of the T2LNP suspensions. The results revealed the heterogeneity of T2LNPs derived from PET and PA, emphasizing the importance of studying different plastic compositions to comprehensively understand nanoplastics pollution. Lastly, the distinctive characteristics and morphology of T2LNPs were translated into the realm of biological interactions, offering initial insights into the influence of these disparities on the formation of the protein corona on the surface of T2LNPs. By proposing T2LNPs as test materials and establishing a comprehensive characterization approach, this study aims to bridge the knowledge gap regarding the behavior and toxicity of nanoplastics. Furthermore, it highlights the need for a reliable and transferable analytical package for nanoplastic characterization to facilitate future studies on the environmental impact of nanoplastics.


Subject(s)
Polyethylene Terephthalates , Water Pollutants, Chemical , Microplastics/toxicity , Nylons , Plastics , Polyethylene , Polymers , Polystyrenes
6.
J Extracell Vesicles ; 12(10): e12349, 2023 10.
Article in English | MEDLINE | ID: mdl-37855042

ABSTRACT

The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.


Subject(s)
Extracellular Vesicles , Cryoelectron Microscopy , Extracellular Vesicles/chemistry , Microscopy, Atomic Force/methods , Lipopolysaccharides , Lipoproteins/analysis
7.
Nanoscale Adv ; 5(18): 4703-4717, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705771

ABSTRACT

To be profitably exploited in medicine, nanosized systems must be endowed with biocompatibility, targeting capability, the ability to evade the immune system, and resistance to clearance. Currently, biogenic nanoparticles, such as extracellular vesicles (EVs), are intensively investigated as the platform that naturally recapitulates these highly needed characteristics. EV native targeting properties and pharmacokinetics can be further augmented by decorating the EV surface with specific target ligands as antibodies. However, to date, studies dealing with the functionalization of the EV surface with proteins have never considered the protein corona "variable", namely the fact that extrinsic proteins may spontaneously adsorb on the EV surface, contributing to determine the surface, and in turn the biological identity of the EV. In this work, we explore and compare the two edge cases of EVs modified with the antibody Cetuximab (CTX) by chemisorption of CTX (through covalent binding via biorthogonal click-chemistry) and by formation of a physisorbed CTX corona. The results indicate that (i) no differences exist between the two formulations in terms of binding affinity imparted by molecular recognition of CTX versus its natural binding partner (epidermal growth factor receptor, EGFR), but (ii) significant differences emerge at the cellular level, where CTX-EVs prepared by click chemistry display superior binding and uptake toward target cells, very likely due to the higher robustness of the CTX anchorage.

8.
Anal Chem ; 95(33): 12443-12451, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556360

ABSTRACT

Extracellular vesicles (EVs) are membrane-enclosed biological nanoparticles with potential as diagnostic markers and carriers for therapeutics. Characterization of EVs poses severe challenges due to their complex structure and composition, requiring the combination of orthogonal analytical techniques. Here, we demonstrate how liquid chromatography combined with multi-angle light scattering (MALS) and fluorescence detection in one single apparatus can provide multiparametric characterization of EV samples, including concentration of particles, average diameter of the particles, protein amount to particle number ratio, presence of EV surface markers and lipids, EV shape, and sample purity. The method requires a small amount of sample of approximately 107 EVs, limited handling of the sample and data analysis time in the order of minutes; it is fully automatable and can be applied to both crude and purified samples.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Chromatography, Liquid , Particle Size
10.
J Colloid Interface Sci ; 640: 100-109, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36842416

ABSTRACT

Although promising for biomedicine, the clinical translation of inorganic nanoparticles (NPs) is limited by low biocompatibility and stability in biological fluids. A common strategy to circumvent this drawback consists in disguising the active inorganic core with a lipid bilayer coating, reminiscent of the structure of the cell membrane to redefine the chemical and biological identity of NPs. While recent reports introduced membrane-coating procedures for NPs, a robust and accessible method to quantify the integrity of the bilayer coverage is not yet available. To fill this gap, we prepared SiO2 nanoparticles (SiO2NPs) with different membrane coverage degrees and monitored their interaction with AuNPs by combining microscopic, scattering, and optical techniques. The membrane-coating on SiO2NPs induces spontaneous clustering of AuNPs, whose extent depends on the coating integrity. Remarkably, we discovered a linear correlation between the membrane coverage and a spectral descriptor for the AuNPs' plasmonic resonance, spanning a wide range of coating yields. These results provide a fast and cost-effective assay to monitor the compatibilization of NPs with biological environments, essential for bench tests and scale-up. In addition, we introduce a robust and scalable method to prepare SiO2NPs/AuNPs hybrids through spontaneous self-assembly, with a high-fidelity structural control mediated by a lipid bilayer.


Subject(s)
Metal Nanoparticles , Nanoparticles , Lipid Bilayers/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Silicon Dioxide/chemistry , Biomimetics , Nanoparticles/chemistry
11.
ACS Biomater Sci Eng ; 9(1): 303-317, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36490313

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained increasing interest in nanomedicine, but most of those that have entered the clinical trials have been withdrawn due to toxicity concerns. Therefore, there is an urgent need to design low-risk and biocompatible SPION formulations. In this work, we present an original safe-by-design nanoplatform made of silica nanoparticles loaded with SPIONs and decorated with polydopamine (SPIONs@SiO2-PDA) and the study of its biocompatibility performance by an ad hoc thorough in vitro to in vivo nanotoxicological methodology. The results indicate that the SPIONs@SiO2-PDA have excellent colloidal stability in serum-supplemented culture media, even after long-term (24 h) exposure, showing no cytotoxic or genotoxic effects in vitro and ex vivo. Physiological responses, evaluated in vivo using Caenorhabditis elegans as the animal model, showed no impact on fertility and embryonic viability, induction of an oxidative stress response, and a mild impact on animal locomotion. These tests indicate that the synergistic combination of the silica matrix and PDA coating we developed effectively protects the SPIONs, providing enhanced colloidal stability and excellent biocompatibility.


Subject(s)
Magnetite Nanoparticles , Animals , Magnetite Nanoparticles/toxicity , Silicon Dioxide/pharmacology , Magnetic Iron Oxide Nanoparticles , Indoles/pharmacology
12.
Colloids Surf B Biointerfaces ; 218: 112728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35969923

ABSTRACT

Nanomaterials are characterized by an extremely large surface-to-volume ratio. Extracellular Vesicles (EVs) - which have been recently recognized as the universal agent of intercellular communication, being involved in many physiological and pathological processes and interkingdom biochemical communication - are nanoparticles, but this key aspect has never been rationally addressed. Here we report the first attempt to quantify the membrane-to-lumen partition of proteins in EVs. A semi-quantitative model based on available well-established compositional and microstructural data is formulated. The model allows for the estimation of the overall protein content of an EV as well as of the partition between membrane (surface) associated and lumen (bulk) contained proteins as a function of the EV size and shape. It further identifies 180 nm as a switch diameter, below which EVs result composed of more membrane than luminal proteins. At larger diameters the partition is reversed, reaching predominance of luminal proteins (> 80 %) in large EVs (diameter > 800 nm). The model is successfully tested to analyze and describe a real preparation composed of subpopulations of small EVs (diameter < 200 nm), including exosomes and ectosomes, and large EVs including large oncosomes (diameter > 1000 nm) from human prostate cancer cells. These findings provide the basis for a better colloidal description of EV samples, might help to understand the stoichiometry of proteins in distinct EV sub-populations, and will improve the design and interpretation of experiments, including EV engineering and dosing in-vitro and in-vivo.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Cell Communication , Exosomes/metabolism , Extracellular Vesicles/chemistry , Humans , Male , Proteins/metabolism
13.
ACS Omega ; 7(27): 23127-23137, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847267

ABSTRACT

Microglial cells are a component of the innate immune system in the brain that support cell-to-cell communication via secreted molecules and extracellular vesicles (EVs). EVs can be divided into two major populations: large (LEVs) and small (SEVs) EVs, carrying different mediators, such as proteins, lipids, and miRNAs. The microglia EVs cargo crucially reflects the status of parental cells and can lead to both beneficial and detrimental effects in many physiopathological states. Herein, a workflow for the extraction and characterization of SEVs and LEVs from human C20 and HMC3 microglia cell lines derived, respectively, from adult and embryonic microglia is reported. EVs were gathered from the culture media of the two cell lines by sequential ultracentrifugation steps and their biochemical and biophysical properties were analyzed by Western blot, transmission electron microscopy, and dynamic light scattering. Although the C20- and HMC3-derived EVs shared several common features, C20-derived EVs were slightly lower in number and more polydispersed. Interestingly, C20- but not HMC3-SEVs were able to interfere with the proliferation of U87 glioblastoma cells. This correlated with the different relative levels of eight miRNAs involved in neuroinflammation and tumor progression in the C20- and HMC3-derived EVs, which in turn reflected a different basal activation state of the two cell types. Our data fill a gap in the community of microglia EVs, in which the preparations from human cells have been poorly characterized so far. Furthermore, these results shed light on both the differences and similarities of EVs extracted from different human microglia cell models, underlining the need to better characterize the features and biological effects of EVs for therein useful and correct application.

14.
J Extracell Biol ; 1(9): e57, 2022 Sep.
Article in English | MEDLINE | ID: mdl-38938771

ABSTRACT

Antithrombin (AT) is a glycoprotein produced by the liver and a principal antagonist of active clotting proteases. A deficit in AT function leads to AT qualitative deficiency, challenging to diagnose. Here we report that active AT may travel physiosorbed on the surface of plasma extracellular vesicles (EVs), contributing to form the "EV-protein corona." The corona is enriched in specific AT glycoforms, thus suggesting glycosylation to play a key role in AT partitioning between EVs and plasma. Differences in AT glycoform composition of the corona of EVs separated from plasma of healthy and AT qualitative deficiency-affected subjects were also noticed. This suggests deconstructing the plasma into its nanostructured components, as EVs, could suggest novel directions to unravel pathophysiological mechanisms.

15.
J Extracell Biol ; 1(10): e63, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38939213

ABSTRACT

Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, "The Extracellular Vesicle Foundry" (evFOUNDRY) and "Extracellular vesicles from a natural source for tailor-made nanomaterials" (VES4US), organized a workshop entitled "massivEVs" to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during "massivEVs", the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.

16.
J Extracell Biol ; 1(5): e41, 2022 May.
Article in English | MEDLINE | ID: mdl-38939526

ABSTRACT

Helminths survive within their host by secreting immunomodulatory compounds, which hold therapeutic potential for inflammatory conditions. Helminth-derived extracellular vesicles (EVs) are one such component proposed to possess immunomodulatory activities. Due to the recent discovery of helminth EVs, standardised protocols for EV separation are lacking. Excretory/secretory products of the porcine helminth, Ascaris suum, were used to compare three EV separation methods: Size exclusion chromatography (SEC), ultracentrifugation (UC) and a combination of the two. Their performance was evaluated by EV yield, sample purity and the ability of EVs to suppress lipopolysaccharide (LPS)-induced inflammation in vitro. We found that all three separation methods successfully separated helminth EVs with a similar EV yield. Functional studies showed that EVs from all three methods reduced LPS-induced levels of tumour necrosis factor (TNF-α) in a dose-dependent manner. Overall, the three separation methods showed similar performance, however, the combination of UC+SEC presented with slightly higher purity than either method alone.

18.
Nanoscale Horiz ; 6(7): 543-550, 2021 06 28.
Article in English | MEDLINE | ID: mdl-33870976

ABSTRACT

Nanosized lipid vesicles are ubiquitous in living systems (e.g. cellular compartments or extracellular vesicles, EVs) and in formulations for nanomedicine (e.g. liposomes for RNA vaccine formulations). The mechanical properties of such vesicles are crucial in several physicochemical and biological processes, ranging from cellular uptake to stability in aerosols. However, their accurate determination remains challenging and requires sophisticated instruments and data analysis. Here we report the first evidence that the surface plasmon resonance (SPR) of citrated gold nanoparticles (AuNPs) adsorbed on synthetic vesicles is finely sensitive to the vesicles' mechanical properties. We then leverage this finding to show that the SPR tracking provides quantitative access to the stiffness of vesicles of synthetic and natural origin, such as EVs. The demonstration of this plasmon-based "stiffness nanoruler" paves the way for developing a facile, cost-effective and high-throughput method to assay the mechanical properties of dispersions of vesicles of nanometric size and unknown composition at a collective level.


Subject(s)
Gold , Metal Nanoparticles , Lipids , Liposomes , Surface Plasmon Resonance
19.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33795519

ABSTRACT

Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE-/- mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.


Subject(s)
Calcinosis/chemically induced , Diphosphonates/adverse effects , Extracellular Vesicles/drug effects , Plaque, Atherosclerotic/complications , Vascular Calcification/chemically induced , Animals , Cells, Cultured , Finite Element Analysis , Humans , Hydrogels , In Vitro Techniques , Mice , Mice, Knockout, ApoE
SELECTION OF CITATIONS
SEARCH DETAIL