Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Oncol ; 59(7): 733-740, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32208873

ABSTRACT

Background: In precision cancer medicine, the challenge is to prioritize DNA driver events, account for resistance markers, and procure sufficient information for treatment that maintains patient safety. The MetAction project, exploring how tumor molecular vulnerabilities predict therapy response, first established the required workflow for DNA sequencing and data interpretation (2014-2015). Here, we employed it to identify molecularly matched therapy and recorded outcome in end-stage cancer (2016-2019).Material and methods: Metastatic tissue from 26 patients (16 colorectal cancer cases) was sequenced by the Oncomine assay. The study tumor boards interpreted called variants with respect to sensitivity or resistance to matched therapy and recommended single-agent or combination treatment if considered tolerable. The primary endpoint was the rate of progression-free survival 1.3-fold longer than for the most recent systemic therapy. The objective response rate and overall survival were secondary endpoints.Results: Both common and rare actionable alterations were identified. Thirteen patients were found eligible for therapy following review of tumor sensitivity and resistance variants and patient tolerability. The interventions were inhibitors of ALK/ROS1-, BRAF-, EGFR-, FGFR-, mTOR-, PARP-, or PD-1-mediated signaling for 2-3 cases each. Among 10 patients who received treatment until radiologic evaluation, 6 (46% of the eligible cases) met the primary endpoint. Four colorectal cancer patients (15% of the total study cohort) had objective response. The only serious adverse event was a transient colitis, which appeared in 1 of the 2 patients given PD-1 inhibitor with complete response. Apart from those two, overall survival was similar for patients who did and did not receive study treatment.Conclusions: The systematic MetAction approach may point forward to a refined framework for how to interpret the complexity of sensitivity versus resistance and patient safety that resides in tumor sequence data, for the possibly improved outcome of precision cancer medicine in future studies. ClinicalTrials.gov, identifier: NCT02142036.


Subject(s)
Carcinoma/drug therapy , Carcinoma/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Adult , Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma/secondary , Crizotinib/therapeutic use , DNA, Neoplasm/analysis , Drug Resistance, Neoplasm/genetics , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Irinotecan/administration & dosage , Male , Middle Aged , Mutation , Neoplasms/pathology , Panitumumab/administration & dosage , Precision Medicine , Progression-Free Survival , Response Evaluation Criteria in Solid Tumors , Sarcoma/secondary , Sequence Analysis, DNA , Signal Transduction/drug effects , Survival Rate , Vemurafenib/administration & dosage , Young Adult
2.
Transl Oncol ; 12(7): 951-958, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31096111

ABSTRACT

Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P < .0001), while enhanced viability was seen in some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.

3.
Cancer Immunol Res ; 7(5): 701-706, 2019 05.
Article in English | MEDLINE | ID: mdl-30804006

ABSTRACT

Most patients whose large bowel cancer has spread to other organs do not respond to immune therapy. We detected a rare gene mutation, termed 9p24.1 copy-number gain (CNG), in an otherwise incurable colorectal cancer that provoked an immune therapy response. We identified this gene mutation by gene-panel sequencing of DNA from a liver metastasis biopsy from a patient who had disease refractory to standard therapies. Following immune checkpoint blockade (ICB) with pembrolizumab (anti-PD-1), the patient experienced conversion of the tumor phenotype from one with epithelial features to that of an inflamed microenvironment, detected by high-resolution RNA sequencing. Circulating tumor DNA disappeared over the first weeks of therapy. As assessed by standard radiographic measurement, the patient had a partial response that was durable. This patient's response may support the use of histology-agnostic ICB in solid tumors that carry the rare 9p24.1 CNG.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Chromosomes, Human, Pair 9/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Liver Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Colonic Neoplasms/pathology , DNA Copy Number Variations , Female , Genetic Loci , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Middle Aged , Mutation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL