Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Biophotonics ; 17(6): e202300536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616109

ABSTRACT

Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non-contact imaging. Three analytical optical reflectance models for homogeneous, semi-infinite, tissue have been proposed (Modified Beer-Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin-based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi-infinite slab.


Subject(s)
Gelatin , Monte Carlo Method , Phantoms, Imaging , Gelatin/chemistry , Models, Biological , Diffusion , Optical Phenomena
2.
PLoS Biol ; 22(3): e3002503, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38478490

ABSTRACT

Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the µm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.


Subject(s)
Cell Culture Techniques , Microtechnology , Microfluidics/methods , Printing, Three-Dimensional , Lab-On-A-Chip Devices
3.
Adv Sci (Weinh) ; 11(14): e2302962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145965

ABSTRACT

Lipid metabolism and signaling play pivotal functions in biology and disease development. Despite this, currently available optical techniques are limited in their ability to directly visualize the lipidome in tissues. In this study, opto-lipidomics, a new approach to optical molecular tissue imaging is introduced. The capability of vibrational Raman spectroscopy is expanded to identify individual lipids in complex tissue matrices through correlation with desorption electrospray ionization (DESI) - mass spectrometry (MS) imaging in an integrated instrument. A computational pipeline of inter-modality analysis is established to infer lipidomic information from optical vibrational spectra. Opto-lipidomic imaging of transient cerebral ischemia-reperfusion injury in a murine model of ischemic stroke demonstrates the visualization and identification of lipids in disease with high molecular specificity using Raman scattered light. Furthermore, opto-lipidomics in a handheld fiber-optic Raman probe is deployed and demonstrates real-time classification of bulk brain tissues based on specific lipid abundances. Opto-lipidomics opens a host of new opportunities to study lipid biomarkers for diagnostics, prognostics, and novel therapeutic targets.


Subject(s)
Lipidomics , Lipids , Animals , Mice , Lipidomics/methods , Lipids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Biomarkers , Lipid Metabolism
4.
Front Neurosci ; 17: 1239764, 2023.
Article in English | MEDLINE | ID: mdl-37790587

ABSTRACT

Introduction: Hyperspectral imaging (HSI) has shown promise in the field of intra-operative imaging and tissue differentiation as it carries the capability to provide real-time information invisible to the naked eye whilst remaining label free. Previous iterations of intra-operative HSI systems have shown limitations, either due to carrying a large footprint limiting ease of use within the confines of a neurosurgical theater environment, having a slow image acquisition time, or by compromising spatial/spectral resolution in favor of improvements to the surgical workflow. Lightfield hyperspectral imaging is a novel technique that has the potential to facilitate video rate image acquisition whilst maintaining a high spectral resolution. Our pre-clinical and first-in-human studies (IDEAL 0 and 1, respectively) demonstrate the necessary steps leading to the first in-vivo use of a real-time lightfield hyperspectral system in neuro-oncology surgery. Methods: A lightfield hyperspectral camera (Cubert Ultris ×50) was integrated in a bespoke imaging system setup so that it could be safely adopted into the open neurosurgical workflow whilst maintaining sterility. Our system allowed the surgeon to capture in-vivo hyperspectral data (155 bands, 350-1,000 nm) at 1.5 Hz. Following successful implementation in a pre-clinical setup (IDEAL 0), our system was evaluated during brain tumor surgery in a single patient to remove a posterior fossa meningioma (IDEAL 1). Feedback from the theater team was analyzed and incorporated in a follow-up design aimed at implementing an IDEAL 2a study. Results: Focusing on our IDEAL 1 study results, hyperspectral information was acquired from the cerebellum and associated meningioma with minimal disruption to the neurosurgical workflow. To the best of our knowledge, this is the first demonstration of HSI acquisition with 100+ spectral bands at a frame rate over 1Hz in surgery. Discussion: This work demonstrated that a lightfield hyperspectral imaging system not only meets the design criteria and specifications outlined in an IDEAL-0 (pre-clinical) study, but also that it can translate into clinical practice as illustrated by a successful first in human study (IDEAL 1). This opens doors for further development and optimisation, given the increasing evidence that hyperspectral imaging can provide live, wide-field, and label-free intra-operative imaging and tissue differentiation.

5.
J Med Imaging (Bellingham) ; 10(4): 046001, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37492187

ABSTRACT

Purpose: Hyperspectral imaging shows promise for surgical applications to non-invasively provide spatially resolved, spectral information. For calibration purposes, a white reference image of a highly reflective Lambertian surface should be obtained under the same imaging conditions. Standard white references are not sterilizable and so are unsuitable for surgical environments. We demonstrate the necessity for in situ white references and address this by proposing a novel, sterile, synthetic reference construction algorithm. Approach: The use of references obtained at different distances and lighting conditions to the subject were examined. Spectral and color reconstructions were compared with standard measurements qualitatively and quantitatively, using ΔE and normalized RMSE, respectively. The algorithm forms a composite image from a video of a standard sterile ruler, whose imperfect reflectivity is compensated for. The reference is modeled as the product of independent spatial and spectral components, and a scalar factor accounting for gain, exposure, and light intensity. Evaluation of synthetic references against ideal but non-sterile references is performed using the same metrics alongside pixel-by-pixel errors. Finally, intraoperative integration is assessed though cadaveric experiments. Results: Improper white balancing leads to increases in all quantitative and qualitative errors. Synthetic references achieve median pixel-by-pixel errors lower than 6.5% and produce similar reconstructions and errors to an ideal reference. The algorithm integrated well into surgical workflow, achieving median pixel-by-pixel errors of 4.77% while maintaining good spectral and color reconstruction. Conclusions: We demonstrate the importance of in situ white referencing and present a novel synthetic referencing algorithm. This algorithm is suitable for surgery while maintaining the quality of classical data reconstruction.

6.
Anal Chem ; 95(7): 3720-3728, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36757324

ABSTRACT

Current techniques for monitoring disease progression and testing drug efficacy in animal models of inflammatory arthritis are either destructive, time-consuming, subjective, or require ionizing radiation. To accommodate this, we have developed a non-invasive and label-free optical system based on Raman spectroscopy for monitoring tissue alterations in rodent models of arthritis at the biomolecular level. To test different sampling geometries, the system was designed to collect both transmission and reflection mode spectra. Mice with collagen antibody-induced arthritis and controls were subject to in vivo Raman spectroscopy at the tibiotarsal joint every 3 days for 14 days. Raman-derived measures of bone content correlated well with micro-computed tomography bone mineral densities. This allowed for time-resolved quantitation of bone densities, which indicated gradual bone erosion in mice with arthritis. Inflammatory pannus formation, bone erosion, and bone marrow inflammation were confirmed by histological analysis. In addition, using library-based spectral decomposition, we quantified the progression of bone and soft tissue components. In general, the tissue components followed significantly different tendencies in mice developing arthritis compared to the control group in line with the histological analysis. In total, this demonstrates Raman spectroscopy as a versatile technique for monitoring alterations to both mineralized and soft tissues simultaneously in rodent models of musculoskeletal disorders. Furthermore, the technique presented herein allows for objective repeated within-animal measurements potentially refining and reducing the use of animals in research while improving the development of novel antiarthritic therapeutics.


Subject(s)
Arthritis , Spectrum Analysis, Raman , Mice , Animals , X-Ray Microtomography/methods , Spectrum Analysis, Raman/methods , Models, Animal , Disease Progression , Disease Models, Animal
7.
Biomed Opt Express ; 13(4): 2278-2285, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35519240

ABSTRACT

Confocal laser endomicroscopy (CLE) offers imaging of tissue microarchitecture and has emerged as a promising tool for in vivo clinical diagnosis of cancer across many organs. CLE, however, can show high inter-observer dependency and does not provide information about tissue molecular composition. In contrast, Raman spectroscopy is a label-free optical technique that provides detailed biomolecular compositional information but offers limited or no morphological information. Here we present a novel hybrid fiber-optic confocal Raman endomicroscopy system for morpho-chemical tissue imaging and analysis. The developed confocal endomicroscopy system is based on a novel detection scheme for rejecting Raman silica fiber interference permitting simultaneous CLE imaging and Raman spectral acquisition of tissues through a coherent fiber bundle. We show that this technique enables real-time microscopic visualization of tissue architecture as well as simultaneous pointwise label-free biomolecular characterization and fingerprinting of tissue paving the way for multimodal diagnostics at endoscopy.

8.
J Orthop Res ; 40(6): 1338-1348, 2022 06.
Article in English | MEDLINE | ID: mdl-34370873

ABSTRACT

The development of treatments for osteoarthritis (OA) is burdened by the lack of standardized biomarkers of cartilage health that can be applied in clinical trials. We present a novel arthroscopic Raman probe that can "optically biopsy" cartilage and quantify key extracellular matrix (ECM) biomarkers for determining cartilage composition, structure, and material properties in health and disease. Technological and analytical innovations to optimize Raman analysis include (1) multivariate decomposition of cartilage Raman spectra into ECM-constituent-specific biomarkers (glycosaminoglycan [GAG], collagen [COL], water [H2 O] scores), and (2) multiplexed polarized Raman spectroscopy to quantify superficial zone (SZ) COL anisotropy via a partial least squares-discriminant analysis-derived Raman collagen alignment factor (RCAF). Raman measurements were performed on a series of ex vivo cartilage models: (1) chemically GAG-depleted bovine cartilage explants (n = 40), (2) mechanically abraded bovine cartilage explants (n = 30), (3) aging human cartilage explants (n = 14), and (4) anatomical-site-varied ovine osteochondral explants (n = 6). Derived Raman GAG score biomarkers predicted 95%, 66%, and 96% of the variation in GAG content of GAG-depleted bovine explants, human explants, and ovine explants, respectively (p < 0.001). RCAF values were significantly different for explants with abrasion-induced SZ COL loss (p < 0.001). The multivariate linear regression of Raman-derived ECM biomarkers (GAG and H2 O scores) predicted 94% of the variation in elastic modulus of ovine explants (p < 0.001). Finally, we demonstrated the first in vivo Raman arthroscopy assessment of an ovine femoral condyle through intraarticular entry into the synovial capsule. This study advances Raman arthroscopy toward a transformative low-cost, minimally invasive diagnostic platform for objective monitoring of treatment outcomes from emerging OA therapies.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Arthroscopy , Cartilage, Articular/chemistry , Cattle , Collagen/analysis , Glycosaminoglycans/analysis , Humans , Sheep
9.
Anal Chem ; 93(48): 15850-15860, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34797972

ABSTRACT

Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2-4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40-90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.


Subject(s)
Deep Learning , Spectrum Analysis, Raman , Molecular Imaging , Neural Networks, Computer , Signal-To-Noise Ratio
10.
J Biomed Opt ; 26(3)2021 03.
Article in English | MEDLINE | ID: mdl-33715315

ABSTRACT

SIGNIFICANCE: Tumor detection and margin delineation are essential for successful tumor resection. However, postsurgical positive margin rates remain high for many cancers. Raman spectroscopy has shown promise as a highly accurate clinical spectroscopic diagnostic modality, but its margin delineation capabilities are severely limited by the need for pointwise application. AIM: We aim to extend Raman spectroscopic diagnostics and develop a multimodal computer vision-based diagnostic system capable of both the detection and identification of suspicious lesions and the precise delineation of disease margins. APPROACH: We first apply visual tracking of a Raman spectroscopic probe to achieve real-time tumor margin delineation. We then combine this system with protoporphyrin IX fluorescence imaging to achieve fluorescence-guided Raman spectroscopic margin delineation. RESULTS: Our system enables real-time Raman spectroscopic tumor margin delineation for both ex vivo human tumor biopsies and an in vivo tumor xenograft mouse model. We then further demonstrate that the addition of protoporphyrin IX fluorescence imaging enables fluorescence-guided Raman spectroscopic margin delineation in a tissue phantom model. CONCLUSIONS: Our image-guided Raman spectroscopic probe-tracking system enables tumor margin delineation and is compatible with both white light and fluorescence image guidance, demonstrating the potential for our system to be developed toward clinical tumor resection surgeries.


Subject(s)
Neoplasms , Spectrum Analysis, Raman , Animals , Biopsy , Diagnostic Imaging , Margins of Excision , Mice
11.
Theranostics ; 11(4): 2006-2019, 2021.
Article in English | MEDLINE | ID: mdl-33408795

ABSTRACT

Theranostics, the combination of diagnosis and therapy, has long held promise as a means to achieving personalised precision cancer treatments. However, despite its potential, theranostics has yet to realise significant clinical translation, largely due the complexity and overriding toxicity concerns of existing theranostic nanoparticle strategies. Methods: Here, we present an alternative nanoparticle-free theranostic approach based on simultaneous Raman spectroscopy and photodynamic therapy (PDT) in an integrated clinical platform for cancer theranostics. Results: We detail the compatibility of Raman spectroscopy and PDT for cancer theranostics, whereby Raman spectroscopic diagnosis can be performed on PDT photosensitiser-positive cells and tissues without inadvertent photosensitiser activation/photobleaching or impaired diagnostic capacity. We further demonstrate that our theranostic platform enables in vivo tumour diagnosis, treatment, and post-treatment molecular monitoring in real-time. Conclusion: This system thus achieves effective theranostic performance, providing a promising new avenue towards the clinical realisation of theranostics.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Monitoring/methods , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Spectrum Analysis, Raman/methods , Theranostic Nanomedicine , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Nat Commun ; 11(1): 6172, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268772

ABSTRACT

Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos.


Subject(s)
Embryo, Nonmammalian/ultrastructure , Molecular Imaging/methods , Spectrum Analysis, Raman/methods , Time-Lapse Imaging/methods , Zebrafish/anatomy & histology , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/metabolism , Molecular Imaging/instrumentation , Multivariate Analysis , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/pathology , Mycobacterium marinum/growth & development , Mycobacterium marinum/pathogenicity , Spectrum Analysis, Raman/instrumentation , Time-Lapse Imaging/instrumentation , Wound Healing/physiology , Zebrafish/growth & development , Zebrafish/metabolism
13.
Opt Lett ; 45(10): 2890-2893, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32412494

ABSTRACT

In this Letter, we report a multiplexed polarized hypodermic Raman needle probe for the biostructural analysis of articular cartilage. Using a custom-developed needle probe with a sapphire ball lens, we measure polarized Raman spectra of cartilage. By imaging two polarizations simultaneously on the charge-coupled device (CCD) and binning them separately, we capture both biochemical and structural tissue information in real time. Here, we demonstrate that polarized Raman spectroscopy can distinguish between different collagen fibril alignment orientations in a cartilage explant model system, supporting its capacity for diagnosing the hallmark collagen alignment changes occurring in the early stages of osteoarthritis (OA). Accordingly, this work shows that needle-based polarized Raman spectroscopy has great potential for the monitoring and diagnosis of early OA.


Subject(s)
Cartilage, Articular/metabolism , Needles , Spectrum Analysis, Raman/instrumentation , Collagen/metabolism
14.
J Mater Chem B ; 8(20): 4447-4459, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32373878

ABSTRACT

Extracellular vesicles (EVs) are biologically-derived nanovectors important for intercellular communication and trafficking. As such, EVs show great promise as disease biomarkers and therapeutic drug delivery vehicles. However, despite the rapidly growing interest in EVs, understanding of the biological mechanisms that govern their biogenesis, secretion, and uptake remains poor. Advances in this field have been hampered by both the complex biological origins of EVs, which make them difficult to isolate and identify, and a lack of suitable imaging techniques to properly study their diverse biological roles. Here, we present a new strategy for simultaneous quantitative in vitro imaging and molecular characterisation of EVs in 2D and 3D based on Raman spectroscopy and metabolic labelling. Deuterium, in the form of deuterium oxide (D2O), deuterated choline chloride (d-Chol), or deuterated d-glucose (d-Gluc), is metabolically incorporated into EVs through the growth of parent cells on medium containing one of these compounds. Isolated EVs are thus labelled with deuterium, which acts as a bio-orthogonal Raman-active tag for direct Raman identification of EVs when introduced to unlabelled cell cultures. Metabolic deuterium incorporation demonstrates no apparent adverse effects on EV secretion, marker expression, morphology, or global composition, indicating its capacity for minimally obstructive EV labelling. As such, our metabolic labelling strategy could provide integral insights into EV biocomposition and trafficking. This approach has the potential to enable a deeper understanding of many of the biological mechanisms underpinning EVs, with profound implications for the design of EVs as therapeutic delivery vectors and applications as disease biomarkers.


Subject(s)
Extracellular Vesicles/chemistry , Molecular Imaging , Spectrum Analysis, Raman , Choline/chemistry , Choline/metabolism , Deuterium Oxide/chemistry , Deuterium Oxide/metabolism , Extracellular Vesicles/metabolism , Glucose/chemistry , Glucose/metabolism , Humans , Particle Size , Surface Properties , Tumor Cells, Cultured
15.
Sci Adv ; 6(13): eaay7608, 2020 03.
Article in English | MEDLINE | ID: mdl-32232154

ABSTRACT

Cellular bioenergetics (CBE) plays a critical role in tissue regeneration. Physiologically, an enhanced metabolic state facilitates anabolic biosynthesis and mitosis to accelerate regeneration. However, the development of approaches to reprogram CBE, toward the treatment of substantial tissue injuries, has been limited thus far. Here, we show that induced repair in a rabbit model of weight-bearing bone defects is greatly enhanced using a bioenergetic-active material (BAM) scaffold compared to commercialized poly(lactic acid) and calcium phosphate ceramic scaffolds. This material was composed of energy-active units that can be released in a sustained degradation-mediated fashion once implanted. By establishing an intramitochondrial metabolic bypass, the internalized energy-active units significantly elevate mitochondrial membrane potential (ΔΨm) to supply increased bioenergetic levels and accelerate bone formation. The ready-to-use material developed here represents a highly efficient and easy-to-implement therapeutic approach toward tissue regeneration, with promise for bench-to-bedside translation.


Subject(s)
Biocompatible Materials/chemistry , Energy Metabolism , Regeneration , Tissue Engineering , Tissue Scaffolds , Animals , Bone Regeneration , Chemical Phenomena , Metabolic Networks and Pathways , Rabbits , Spectrum Analysis , Tissue Scaffolds/chemistry
16.
Nat Commun ; 11(1): 207, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924755

ABSTRACT

Label-free surface-enhanced Raman spectroscopy (SERS) can interrogate systems by directly fingerprinting their components' unique physicochemical properties. In complex biological systems however, this can yield highly overlapping spectra that hinder sample identification. Here, we present an artificial-nose inspired SERS fingerprinting approach where spectral data is obtained as a function of sensor surface chemical functionality. Supported by molecular dynamics modeling, we show that mildly selective self-assembled monolayers can influence the strength and configuration in which analytes interact with plasmonic surfaces, diversifying the resulting SERS fingerprints. Since each sensor generates a modulated signature, the implicit value of increasing the dimensionality of datasets is shown using cell lysates for all possible combinations of up to 9 fingerprints. Reliable improvements in mean discriminatory accuracy towards 100% are achieved with each additional surface functionality. This arrayed label-free platform illustrates the wide-ranging potential of high-dimensionality artificial-nose based sensing systems for more reliable assessment of complex biological matrices.


Subject(s)
Biosensing Techniques , Electronic Nose , Spectrum Analysis, Raman/methods , Chemical Phenomena , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Biological , Molecular Dynamics Simulation , Multivariate Analysis , Spectrum Analysis, Raman/instrumentation
17.
Article in English | MEDLINE | ID: mdl-31737621

ABSTRACT

The extracellular matrix (ECM) consists of a complex mesh of proteins, glycoproteins, and glycosaminoglycans, and is essential for maintaining the integrity and function of biological tissues. Imaging and biomolecular characterization of the ECM is critical for understanding disease onset and for the development of novel, disease-modifying therapeutics. Recently, there has been a growing interest in the use of Raman spectroscopy to characterize the ECM. Raman spectroscopy is a label-free vibrational technique that offers unique insights into the structure and composition of tissues and cells at the molecular level. This technique can be applied across a broad range of ECM imaging applications, which encompass in vitro, ex vivo, and in vivo analysis. State-of-the-art confocal Raman microscopy imaging now enables label-free assessments of the ECM structure and composition in tissue sections with a remarkably high degree of biomolecular specificity. Further, novel fiber-optic instrumentation has opened up for clinical in vivo ECM diagnostic measurements across a range of tissue systems. A palette of advanced computational methods based on multivariate statistics, spectral unmixing, and machine learning can be applied to Raman data, allowing for the extraction of specific biochemical information of the ECM. Here, we review Raman spectroscopy techniques for ECM characterizations over a variety of exciting applications and tissue systems, including native tissue assessments (bone, cartilage, cardiovascular), regenerative medicine quality assessments, and diagnostics of disease states. We further discuss the challenges in the widespread adoption of Raman spectroscopy in biomedicine. The results of the latest discovery-driven Raman studies are summarized, illustrating the current and potential future applications of Raman spectroscopy in biomedicine.

18.
Nat Commun ; 9(1): 4256, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323298

ABSTRACT

Enabling concurrent, high throughput analysis of single nanoparticles would greatly increase the capacity to study size, composition and inter and intra particle population variance with applications in a wide range of fields from polymer science to drug delivery. Here, we present a comprehensive platform for Single Particle Automated Raman Trapping Analysis (SPARTA) able to integrally analyse nanoparticles ranging from synthetic polymer particles to liposomes without any modification. With the developed highly controlled automated trapping process, single nanoparticles are analysed with high throughput and sensitivity to resolve particle mixtures, obtain detailed compositional spectra of complex particles, track sequential functionalisations, derive particle sizes and monitor the dynamics of click reactions occurring on the nanoparticle surface. The SPARTA platform opens up a wide range of new avenues for nanoparticle research through label-free integral high-throughput single particle analysis, overcoming key limitations in sensitivity and specificity of existing bulk analysis methods.

19.
ACS Cent Sci ; 4(1): 39-51, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29392175

ABSTRACT

Analyzing lipid composition and distribution within the brain is important to study white matter pathologies that present focal demyelination lesions, such as multiple sclerosis. Some lesions can endogenously re-form myelin sheaths. Therapies aim to enhance this repair process in order to reduce neurodegeneration and disability progression in patients. In this context, a lipidomic analysis providing both precise molecular classification and well-defined localization is crucial to detect changes in myelin lipid content. Here we develop a correlated heterospectral lipidomic (HSL) approach based on coregistered Raman spectroscopy, desorption electrospray ionization mass spectrometry (DESI-MS), and immunofluorescence imaging. We employ HSL to study the structural and compositional lipid profile of demyelination and remyelination in an induced focal demyelination mouse model and in multiple sclerosis lesions from patients ex vivo. Pixelwise coregistration of Raman spectroscopy and DESI-MS imaging generated a heterospectral map used to interrelate biomolecular structure and composition of myelin. Multivariate regression analysis enabled Raman-based assessment of highly specific lipid subtypes in complex tissue for the first time. This method revealed the temporal dynamics of remyelination and provided the first indication that newly formed myelin has a different lipid composition compared to normal myelin. HSL enables detailed molecular myelin characterization that can substantially improve upon the current understanding of remyelination in multiple sclerosis and provides a strategy to assess remyelination treatments in animal models.

20.
Sci Adv ; 3(12): e1701156, 2017 12.
Article in English | MEDLINE | ID: mdl-29226241

ABSTRACT

Medial calcification in the human aorta accumulates during aging and is known to be aggravated in several diseases. Atherosclerosis, another major cause of cardiovascular calcification, shares some common aggravators. However, the mechanisms of cardiovascular calcification remain poorly understood. To elucidate the relationship between medial aortic calcification and atherosclerosis, we characterized the cross-sectional distributions of the predominant minerals in aortic tissue, apatite and whitlockite, and the associated extracellular matrix. We also compared the cellular changes between atherosclerotic and nonatherosclerotic human aortic tissues. This was achieved through the development of Raman spectroscopy imaging methods that adapted algorithms to distinguish between the major biomolecules present within these tissues. We present a relationship between apatite, cholesterol, and triglyceride in atherosclerosis, with the relative amount of all molecules concurrently increased in the atherosclerotic plaque. Further, the increase in apatite was disproportionately large in relation to whitlockite in the aortic media directly underlying a plaque, indicating that apatite is more pathologically significant in atherosclerosis-aggravated medial calcification. We also discovered a reduction of ß-carotene in the whole aortic intima, including a plaque in atherosclerotic aortic tissues compared to nonatherosclerotic tissues. This unprecedented biomolecular characterization of the aortic tissue furthers our understanding of pathological and physiological cardiovascular calcification events in humans.


Subject(s)
Aorta/diagnostic imaging , Atherosclerosis/diagnostic imaging , Vascular Calcification/diagnostic imaging , Adolescent , Adult , Aged , Aorta/chemistry , Aorta/pathology , Apatites/analysis , Atherosclerosis/pathology , Calcium Phosphates/analysis , Case-Control Studies , Cholesterol/analysis , Cholesterol Esters/analysis , Humans , Middle Aged , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Spectrum Analysis, Raman , Triglycerides/analysis , Tunica Intima/chemistry , Tunica Intima/diagnostic imaging , beta Carotene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...