Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters











Publication year range
1.
Nature ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358515

ABSTRACT

The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.

2.
bioRxiv ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39345567

ABSTRACT

The chromosome 15q11.2 locus is deleted in 1.5% of patients with genetic epilepsy and confers a risk for intellectual disability and schizophrenia. Individuals with this deletion demonstrate increased cortical thickness, decreased cortical surface area and white matter abnormalities. Human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPC) from 15q11.2 deletion individuals exhibit early adhesion junction and migration abnormalities, but later neuronal development and function have not been fully assessed. Imaging studies indicating altered structure and network connectivity in the anterior brain regions and the cingulum suggest that in addition to alterations in progenitor dynamics, there may also be structural and functional changes within discrete networks of mature neurons. To explore this, we generated human forebrain cortical neurons from iPSCs derived from individuals with or without 15q11.2 deletion and used longitudinal imaging and multielectrode array analysis to evaluate neuronal development over time. 15q11.2 deleted neurons exhibited fewer connections and an increase in inhibitory neurons. Individual neurons had decreased neurite complexity and overall decreased neurite length. These structural changes were associated with a reduction in multiunit action potential generation, bursting and synchronization. The 15q11.2 deleted neurons also demonstrated specific functional deficits in glutamate and GABA mediated network activity and synchronization with a delay in the maturation of the inhibitory response to GABA. These data indicate that deletion of the 15q11.2 region is sufficient to impair the structural and functional maturation of cortical neuron networks which likely underlies the pathologic changes in humans with the 15q11.2 deletion.

3.
bioRxiv ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39185174

ABSTRACT

The hair bundle of auditory and vestibular hair cells converts mechanical stimuli into electrical signals through mechanoelectrical transduction (MET). The MET apparatus is built around a tip link that connects neighboring stereocilia that are aligned in the direction of mechanosensitivity of the hair bundle. Upon stimulation, the MET channel complex responds to changes in tip-link tension and allows a cation influx into the cell. Ca2+ influx in stereocilia has been used as a signature of MET activity. Using genetically encoded Ca2+ sensors (GCaMP3, GCaMP6s) and high-performance fluorescence confocal microscopy, we detect spontaneous Ca2+ transients in individual stereocilia in developing and fully formed hair bundles. We demonstrate that this activity is abolished by MET channel blockers and thus likely originates from putative MET channels. We observe Ca2+ transients in the stereocilia of mice in tissue explants as well as in vivo in zebrafish hair cells, indicating this activity is functionally conserved. Within stereocilia, the origin of Ca2+ transients is not limited to the canonical MET site at the stereocilia tip but is also present along the stereocilia length. Remarkably, we also observe these Ca2+ transients in the microvilli-like structures on the hair cell surface in the early stages of bundle development, prior to the onset of MET. Ca2+ transients are also present in the tallest rows of stereocilia in auditory hair cells, structures not traditionally thought to contain MET channels. We hypothesize that this newly described activity may reflect stochastic and spontaneous MET channel opening. Localization of these transients to other regions of the stereocilia indicates the presence of a pool of channels or channel precursors. Our work provides insights into MET channel assembly, maturation, function, and turnover.

5.
Article in English | MEDLINE | ID: mdl-38926267

ABSTRACT

Transient receptor potential (TRP) channels play key roles in sensory biology as transducers of various stimuli. Although these ion channels are expressed in the cochlea, their functions remain poorly understood. Recent studies by Vélez-Ortega and colleagues indicate that their expression by non-sensory supporting cells helps limit damage from acoustic trauma.

6.
Nat Neurosci ; 27(8): 1545-1554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849524

ABSTRACT

In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin. These ectopic oligodendrocytes (eOLs) have a distinctive gene expression profile as well as subtle myelination abnormalities. The failure of eOLs to fully assume the role of the original dorsally derived cells results in locomotor and cognitive deficits in the adult animal. This study reveals the importance of developmental heterogeneity within the oligodendrocyte lineage and its importance for homeostatic brain function.


Subject(s)
Brain , Cell Lineage , Oligodendroglia , Animals , Oligodendroglia/physiology , Mice , Brain/cytology , Brain/embryology , Cell Lineage/physiology , Cell Differentiation/physiology , Mice, Transgenic , Myelin Sheath/metabolism , Myelin Sheath/physiology
7.
Trends Neurosci ; 47(7): 522-537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782701

ABSTRACT

Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.


Subject(s)
Cochlea , Hearing , Animals , Cochlea/physiology , Humans , Hearing/physiology , Auditory Pathways/physiology , Auditory Perception/physiology , Hair Cells, Auditory/physiology
8.
Nat Commun ; 15(1): 3039, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589390

ABSTRACT

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.


Subject(s)
Astrocytes , Calcium , Mice , Animals , Astrocytes/metabolism , Calcium/metabolism , Neurons/metabolism , Diagnostic Imaging , Cerebral Cortex/metabolism , Calcium Signaling/physiology
9.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659917

ABSTRACT

Afferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities. Here we show using in vivo simultaneous imaging of neuronal and astrocyte calcium activity in awake mouse pups that waves of retinal ganglion cell activity induce spatially and temporally correlated waves of astrocyte activity in the superior colliculus that depend on metabotropic glutamate receptors mGluR5 and mGluR3. Astrocyte calcium transients reliably occurred with each neuronal wave, but peaked more than one second after neuronal events. Despite differences in the temporal features of spontaneous activity in auditory and visual processing regions, individual astrocytes exhibited similar overall calcium activity patterns, providing a conserved mechanism to synchronize neuronal and astrocyte maturation within discrete sensory domains.

10.
Nat Neurosci ; 27(3): 433-448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38267524

ABSTRACT

The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.


Subject(s)
Axons , White Matter , Mice , Animals , Axons/physiology , Oligodendroglia/metabolism , White Matter/metabolism , Homeostasis , Lactates/metabolism
11.
Nat Neurosci ; 26(10): 1739-1750, 2023 10.
Article in English | MEDLINE | ID: mdl-37697112

ABSTRACT

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated from oligodendrocyte precursor cells (OPCs) that express neurotransmitter receptors. However, the mechanisms that affect OPC activity in vivo and the physiological roles of neurotransmitter signaling in OPCs are unclear. In this study, we generated a transgenic mouse line that expresses membrane-anchored GCaMP6s in OPCs and used longitudinal two-photon microscopy to monitor OPC calcium (Ca2+) dynamics in the cerebral cortex. OPCs exhibit focal and transient Ca2+ increases within their processes that are enhanced during locomotion-induced increases in arousal. The Ca2+ transients occur independently of excitatory neuron activity, rapidly decline when OPCs differentiate and are inhibited by anesthesia, sedative agents or noradrenergic receptor antagonists. Conditional knockout of α1A adrenergic receptors in OPCs suppresses spontaneous and locomotion-induced Ca2+ increases and reduces OPC proliferation. Our results demonstrate that OPCs are directly modulated by norepinephrine in vivo to enhance Ca2+ dynamics and promote population homeostasis.


Subject(s)
Oligodendrocyte Precursor Cells , Mice , Animals , Oligodendrocyte Precursor Cells/physiology , Calcium/pharmacology , Norepinephrine/pharmacology , Mice, Transgenic , Oligodendroglia/physiology , Cerebral Cortex , Cell Proliferation/physiology , Arousal , Cell Differentiation/physiology
12.
Cells ; 12(10)2023 05 17.
Article in English | MEDLINE | ID: mdl-37408246

ABSTRACT

Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal.


Subject(s)
Astrocytes , Morphine , Mice , Animals , Morphine/adverse effects , Receptors, Opioid , Narcotic Antagonists/pharmacology , Naloxone/pharmacology , Mice, Knockout , Receptors, Opioid, mu/genetics
13.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292710

ABSTRACT

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales through their close proximity to synapses. However, our knowledge about how astrocytes are functionally recruited during different animal behaviors and their diverse effects on the CNS remains limited. To enable measurement of astrocyte activity patterns in vivo during normative behaviors, we developed a high-resolution, long working distance, multi-core fiber optic imaging platform that allows visualization of cortical astrocyte calcium transients through a cranial window in freely moving mice. Using this platform, we defined the spatiotemporal dynamics of astrocytes during diverse behaviors, ranging from circadian fluctuations to novelty exploration, showing that astrocyte activity patterns are more variable and less synchronous than apparent in head-immobilized imaging conditions. Although the activity of astrocytes in visual cortex was highly synchronized during quiescence to arousal transitions, individual astrocytes often exhibited distinct thresholds and activity patterns during explorative behaviors, in accordance with their molecular diversity, allowing temporal sequencing across the astrocyte network. Imaging astrocyte activity during self-initiated behaviors revealed that noradrenergic and cholinergic systems act synergistically to recruit astrocytes during state transitions associated with arousal and attention, which was profoundly modulated by internal state. The distinct activity patterns exhibited by astrocytes in the cerebral cortex may provide a means to vary their neuromodulatory influence in response to different behaviors and internal states.

14.
PLoS Biol ; 21(6): e3002160, 2023 06.
Article in English | MEDLINE | ID: mdl-37368868

ABSTRACT

Intrinsically generated neural activity propagates through the developing auditory system to promote maturation and refinement of sound processing circuits prior to hearing onset. This early patterned activity is induced by non-sensory supporting cells in the organ of Corti, which are highly interconnected through gap junctions containing connexin 26 (Gjb2). Although loss of function mutations in Gjb2 impair cochlear development and are the most common cause of congenital deafness, it is not known if these variants disrupt spontaneous activity and the developmental trajectory of sound processing circuits in the brain. Here, we show in a new mouse model of Gjb2-mediated congenital deafness that cochlear supporting cells adjacent to inner hair cells (IHCs) unexpectedly retain intercellular coupling and the capacity to generate spontaneous activity, exhibiting only modest deficits prior to hearing onset. Supporting cells lacking Gjb2 elicited coordinated activation of IHCs, leading to coincident bursts of activity in central auditory neurons that will later process similar frequencies of sound. Despite alterations in the structure of the sensory epithelium, hair cells within the cochlea of Gjb2-deficient mice were intact and central auditory neurons could be activated within appropriate tonotopic domains by loud sounds at hearing onset, indicating that early maturation and refinement of auditory circuits was preserved. Only after cessation of spontaneous activity following hearing onset did progressive hair cell degeneration and enhanced auditory neuron excitability manifest. This preservation of cochlear spontaneous neural activity in the absence of connexin 26 may increase the effectiveness of early therapeutic interventions to restore hearing.


Subject(s)
Cochlea , Deafness , Mice , Animals , Connexin 26 , Cochlea/physiology , Hair Cells, Auditory/physiology , Hair Cells, Auditory, Inner/physiology , Deafness/genetics
15.
Nat Methods ; 20(6): 935-944, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37169928

ABSTRACT

Learning is thought to involve changes in glutamate receptors at synapses, submicron structures that mediate communication between neurons in the central nervous system. Due to their small size and high density, synapses are difficult to resolve in vivo, limiting our ability to directly relate receptor dynamics to animal behavior. Here we developed a combination of computational and biological methods to overcome these challenges. First, we trained a deep-learning image-restoration algorithm that combines the advantages of ex vivo super-resolution and in vivo imaging modalities to overcome limitations specific to each optical system. When applied to in vivo images from transgenic mice expressing fluorescently labeled glutamate receptors, this restoration algorithm super-resolved synapses, enabling the tracking of behavior-associated synaptic plasticity with high spatial resolution. This method demonstrates the capabilities of image enhancement to learn from ex vivo data and imaging techniques to improve in vivo imaging resolution.


Subject(s)
Neurons , Synapses , Mice , Animals , Synapses/physiology , Image Enhancement , Mice, Transgenic , Neuronal Plasticity
16.
Elife ; 122023 04 14.
Article in English | MEDLINE | ID: mdl-37057892

ABSTRACT

Oligodendrocytes and their progenitors upregulate MHC pathways in response to inflammation, but the frequency of this phenotypic change is unknown and the features of these immune oligodendroglia are poorly defined. We generated MHC class I and II transgenic reporter mice to define their dynamics in response to inflammatory demyelination, providing a means to monitor MHC activation in diverse cell types in living mice and define their roles in aging, injury, and disease.


Nerve cells in the brain and spinal cord are surrounded by a layer of insulation called myelin that allows cells to transmit messages to each other more quickly and efficiently. This protective sheath is produced by cells called oligodendrocytes which together with their immature counterparts can also repair damage caused to myelin. In the inflammatory disease multiple sclerosis (MS), this insulation is disrupted and oligodendroglia fail to repair breaks in the myelin sheath, leaving nerves vulnerable to further damage. Recently it was discovered that mature and immature oligodendrocytes (which are collectively known as oligodendroglia) sometimes express proteins normally restricted to the immune system called major histocompatibility complexes (or MHCs for short). Researchers believe that MHC expression may allow oligodendroglia to interact with immune cells, potentially leading to the removal of oligodendroglia by the immune system as well as inflammation that exacerbates damage to nerves and hinders myelin repair. Knowing when oligodendroglia start producing MHCs and where these MHC-expressing cells are located is therefore important for understanding their role in MS. However, it is difficult to identify the location of MHC-expressing oligodendroglia using methods that are currently available. To address this, Harrington, Catenacci et al. created a genetically engineered mouse model in which the MHC-expressing oligodendroglia also generated a red fluorescent protein that could be detected under a microscope. This revealed that only a small number of oligodendroglia in the nervous system had MHCs, but these cells were located in areas of the brain and spinal cord with the highest inflammatory activity. Further microscopy studies in mice that developed MS-like symptoms revealed that MHC production in oligodendroglia increased compared with healthy animals, and that the proportion of oligodendroglia that produced MHC was highest in mice with the most severe symptoms. MHC-expressing oligodendroglia also congregated in the most damaged areas of the brain and spinal cord. These results suggest that MHC expression may contribute to inflammation and impact the function of oligodendroglia that have these molecules. In the future, Harrington et al. hope that their new mouse model will help researchers study the role of MHC expression in different diseases, and in the case of MS, aid the development of new treatments.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Mice , Animals , Multiple Sclerosis/metabolism , Demyelinating Diseases/metabolism , Oligodendroglia/metabolism , Mice, Transgenic , Myelin Sheath/metabolism
17.
Proc Natl Acad Sci U S A ; 119(48): e2202580119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36417438

ABSTRACT

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.


Subject(s)
Neocortex , Oligodendrocyte Precursor Cells , Animals , Mice , Axons/metabolism , Oligodendroglia/metabolism , Neurons/metabolism
18.
Cell Rep ; 41(7): 111649, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384119

ABSTRACT

Neurons that process sensory information exhibit bursts of electrical activity during development, providing early training to circuits that will later encode similar features of the external world. In the mammalian auditory system, this intrinsically generated activity emerges from the cochlea prior to hearing onset, but its role in maturation of auditory circuitry remains poorly understood. We show that selective suppression of cochlear supporting cell spontaneous activity disrupts patterned burst firing of central auditory neurons without affecting cell survival or acoustic thresholds. However, neurons in the inferior colliculus of these mice exhibit enhanced acoustic sensitivity and broader frequency tuning, resulting in wider isofrequency laminae. Despite this enhanced neural responsiveness, total tone-responsive regions in the auditory cortex are substantially smaller. Thus, disruption of pre-hearing cochlear activity causes profound changes in neural encoding of sound, with important implications for restoration of hearing in individuals who experience reduced activity during this critical developmental period.


Subject(s)
Auditory Cortex , Inferior Colliculi , Mice , Animals , Inferior Colliculi/physiology , Auditory Cortex/physiology , Cochlea , Hearing , Neurons/physiology , Mammals
19.
Nat Commun ; 13(1): 5773, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36182931

ABSTRACT

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Subject(s)
Calcium , RNA Splicing , Alternative Splicing/genetics , Base Sequence , Exons/genetics , Gene Expression Regulation , Introns/genetics
SELECTION OF CITATIONS
SEARCH DETAIL