Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4022, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419903

ABSTRACT

Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of ß-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.


Subject(s)
Embryonic Development , Germ Layers , Animals , Mice , Humans , gamma Catenin/genetics , gamma Catenin/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Embryonic Development/genetics , Gene Expression Profiling , Blastocyst/metabolism , Mammals/genetics
2.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37217306

ABSTRACT

Human germline-soma segregation occurs during weeks 2-3 in gastrulating embryos. Although direct studies are hindered, here, we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation using in vivo datasets from human and nonhuman primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Furthermore, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A-positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments shows that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion and is subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.


Subject(s)
Embryo, Mammalian , Gene Regulatory Networks , Animals , Humans , Gene Regulatory Networks/genetics , Cell Differentiation/genetics , Germ Layers , Germ Cells
3.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36125063

ABSTRACT

The early specification and rapid growth of extraembryonic membranes are distinctive hallmarks of primate embryogenesis. These complex tasks are resolved through an intricate combination of signals controlling the induction of extraembryonic lineages and, at the same time, safeguarding the pluripotent epiblast. Here, we delineate the signals orchestrating primate epiblast and amnion identity. We encapsulated marmoset pluripotent stem cells into agarose microgels and identified culture conditions for the development of epiblast- and amnion-spheroids. Spatial identity mapping authenticated spheroids generated in vitro by comparison with marmoset embryos in vivo. We leveraged the microgel system to functionally interrogate the signalling environment of the post-implantation primate embryo. Single-cell profiling of the resulting spheroids demonstrated that activin/nodal signalling is required for embryonic lineage identity. BMP4 promoted amnion formation and maturation, which was counteracted by FGF signalling. Our combination of microgel culture, single-cell profiling and spatial identity mapping provides a powerful approach to decipher the essential cues for embryonic and extraembryonic lineage formation in primate embryogenesis.


Subject(s)
Microgels , Activins , Amnion , Animals , Callithrix , Cell Differentiation , Germ Layers , Sepharose
4.
Nature ; 609(7925): 136-143, 2022 09.
Article in English | MEDLINE | ID: mdl-35709828

ABSTRACT

Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues1-3. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development4-6 and to advance stem-cell-based regenerative approaches7. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.


Subject(s)
Callithrix , Gastrulation , Uterus , Animals , Callithrix/embryology , Cell Differentiation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Endoderm/cytology , Endoderm/embryology , Female , Gene Expression Profiling , Germ Layers/cytology , Germ Layers/embryology , Humans , Pluripotent Stem Cells/cytology
5.
Nat Commun ; 13(1): 3407, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710749

ABSTRACT

Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols.


Subject(s)
Embryo, Mammalian , Transcriptome , Animals , Blastocyst/metabolism , Cell Lineage/genetics , Embryo Implantation/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Mammals/genetics , Transcriptome/genetics
6.
Commun Biol ; 4(1): 749, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140619

ABSTRACT

The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.


Subject(s)
Stem Cells/physiology , Tissue Engineering/methods , Uterus/cytology , Uterus/physiology , Animals , Embryo Implantation/physiology , Female , Fetal Development/physiology , Humans , Models, Biological , Placenta/physiology , Pregnancy , Primates , Tissue Scaffolds
7.
Phytother Res ; 32(9): 1729-1740, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29672979

ABSTRACT

The antileishmanial activity of the essential oil (EO) from Chenopodium ambrosioides L. has been demonstrated in vitro and in animal models, attributed to the major components of the EO. This study focused on the effects of the three major EO compounds carvacrol, caryophyllene oxide (Caryo), and the antileishmanial endoperoxide ascaridole (Asc) on mitochondrial functions in Leishmania tarentolae promastigotes (LtP). EO and Caryo were able to partially inhibit the leishmanial electron transport chain, whereas other components failed to demonstrate a direct immediate effect. Caryo demonstrated inhibition of complex III activity in LtP and in isolated complex III from other species. The formation of superoxide radicals was studied in Leishmania by electron spin resonance spectroscopy in the presence of iron chelators wherein selected compounds failed to trigger a significant immediate additional superoxide production in LtP. However, upon prolonged incubation of Leishmania with Asc and especially in the absence of iron chelators (allowing the activation of Asc), an increased superoxide radical production and significant impairment of mitochondrial coupling in Leishmania was observed. Prolonged incubation with all EO components resulted in thiol depletion. Taken together, the major components of EO mediate their leishmanicidal activity via different mitochondrial targets and time profiles. Further studies are required to elucidate possible synergistic effects of carvacrol and Asc and the influence of minor compounds.


Subject(s)
Chenopodium ambrosioides/chemistry , Leishmania/drug effects , Mitochondria/drug effects , Oils, Volatile/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Cattle , Cyclohexane Monoterpenes , Cymenes , Monoterpenes/pharmacology , Peroxides/pharmacology , Polycyclic Sesquiterpenes , Saccharomyces cerevisiae , Sesquiterpenes/pharmacology , Superoxides
9.
Mol Neurobiol ; 55(11): 8425-8437, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29550918

ABSTRACT

Defects in autophagy and the resulting deposition of protein aggregates have been implicated in aging and neurodegenerative diseases. While gene targeting in the mouse has facilitated the characterization of these processes in different types of neurons, potential roles of autophagy and accumulation of protein substrates in neuroepithelial cells have remained elusive. Here we report that Atg7f/f Tyr-Cre mice, in which autophagy-related 7 (Atg7) is conditionally deleted under the control of the tyrosinase promoter, are a model for accumulations of the autophagy adapter and substrate sequestosome-1/p62 in both neuronal and neuroepithelial cells. In the brain of Atg7f/f Tyr-Cre but not of fully autophagy competent control mice, p62 aggregates were present in sporadic neurons in the cortex and other brain regions as well in epithelial cells of the choroid plexus and the ependyma. Western blot analysis confirmed a dramatic increase of p62 abundance and formation of high-molecular weight species of p62 in the brain of Atg7f/f Tyr-Cre mice relative to Atg7f/f controls. Immuno-electron microscopy showed that p62 formed filamentous aggregates in neurons and ependymal cells. p62 aggregates were also highly abundant in the ciliary body in the eye. Atg7f/f Tyr-Cre mice reached an age of more than 2 years although neurological defects manifesting in abnormal hindlimb clasping reflexes were evident in old mice. These results show that p62 filaments form in response to impaired autophagy in vivo and suggest that Atg7f/f Tyr-Cre mice are a model useful to study the long-term effects of autophagy deficiency on the homeostasis of different neuroectoderm-derived cells.


Subject(s)
Autophagy-Related Protein 7/genetics , Autophagy/genetics , Brain/pathology , Gene Deletion , Neuroepithelial Cells/metabolism , Neurons/metabolism , Protein Aggregates , Sequestosome-1 Protein/metabolism , Animals , Ciliary Body/metabolism , Ependyma/metabolism , Ependyma/pathology , Female , Integrases/metabolism , Mice , Neuroepithelial Cells/ultrastructure , Neurons/pathology , Neurons/ultrastructure , Phospholipids/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...