Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
2.
J Infect Dis ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38330357

ABSTRACT

INTRODUCTION: Malaria is preventable yet causes >600,000 deaths annually. RTS, S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation Phase 1 study of a recombinant, full-length circumsporozoite protein vaccine (rCSP) administered with adjuvant GLA-LSQ on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naïve adults. Primary endpoints were safety and reactogenicity. Secondary endpoints were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection (CHMI). RESULTS: Participants were enrolled into four groups receiving rCSP/GLA-LSQ: 10 µg x 3 (n = 20), 30 µg x 3 (n = 10), 60 µg x 3 (n = 10) or 60 µg x 2 (n = 9); ten participants received 30 µg rCSP alone x 3; and six infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent CHMI 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher IgG titers, but did not achieve previously established RTS, S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess if adjuvant or schedule adjustments improve efficacy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03589794.

3.
Front Immunol ; 14: 1286618, 2023.
Article in English | MEDLINE | ID: mdl-38054000

ABSTRACT

Background: People living in close quarters, such as military trainees, are at increased risk for skin and soft tissue infections (SSTI), especially those caused by methicillin-resistant Staphylococcus aureus (MRSA). The serum immune factors associated with the onset of SSTI are not well understood. Methods: We conducted a longitudinal study of SSTIs, enrolling US Army trainees before starting military training and following up for 14 weeks. Samples were collected on Day 0, 56, and 90. Serum chemokines and cytokines among 16 SSTI cases and 51 healthy controls were evaluated using an electro-chemiluminescence based multiplex assay platform. Results: Of 54 tested cytokines, 12 were significantly higher among SSTI cases as compared to controls. Among the cases, there were correlations between factors associated with vascular injury (i.e., VCAM-1, ICAM-1, and Flt1), the angiogenetic factor VEGF, and IL-10. Unsupervised machine learning (Principal Component Analysis) revealed that IL10, IL17A, C-reactive protein, ICAM1, VCAM1, SAA, Flt1, and VGEF were indicative of SSTI. Conclusion: The study demonstrates the power of immunoprofiling for identifying factors predictive of pre-illness state of SSTI thereby identifying early stages of an infection and individuals susceptible to SSTI.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Soft Tissue Infections , Staphylococcal Infections , Staphylococcal Skin Infections , Humans , Staphylococcus aureus , Longitudinal Studies , Biomarkers , Cytokines
4.
Front Immunol ; 14: 1303446, 2023.
Article in English | MEDLINE | ID: mdl-38152401

ABSTRACT

Introduction: Pre-erythrocytic malaria vaccines hold the promise of inducing sterile protection thereby preventing the morbidity and mortality associated with Plasmodium infection. The main surface antigen of P. falciparum sporozoites, i.e., the circumsporozoite protein (CSP), has been extensively explored as a target of such vaccines with significant success in recent years. Systematic adjuvant selection, refinements of the immunization regimen, and physical properties of the antigen may all contribute to the potential of increasing the efficacy of CSP-based vaccines. Protection appears to be dependent in large part on CSP antibodies. However due to a knowledge gap related to the exact correlates of immunity, there is a critical need to improve our ability to down select candidates preclinically before entering clinical trials including with controlled human malaria infections (CHMI). Methods: We developed a novel multiplex competition assay based on well-characterized monoclonal antibodies (mAbs) that target crucial epitopes across the CSP molecule. This new tool assesses both, quality and epitope-specific concentrations of vaccine-induced antibodies by measuring their equivalency with a panel of well-characterized, CSP-epitope-specific mAbs. Results: Applying this method to RTS,S-immune sera from a CHMI trial demonstrated a quantitative epitope-specificity profile of antibody responses that can differentiate between protected vs. nonprotected individuals. Aligning vaccine efficacy with quantitation of the epitope fine specificity results of this equivalency assay reveals the importance of epitope specificity. Discussion: The newly developed serological equivalence assay will inform future vaccine design and possibly even adjuvant selection. This methodology can be adapted to other antigens and disease models, when a panel of relevant mAbs exists, and could offer a unique tool for comparing and down-selecting vaccine formulations.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Antibodies, Protozoan , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Antibodies, Monoclonal , Adjuvants, Immunologic , Epitopes
5.
Hum Vaccin Immunother ; 19(3): 2282693, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38010150

ABSTRACT

The identification of immune correlates of protection against infectious pathogens will accelerate the design and optimization of recombinant and subunit vaccines. Systematic analyses such as immunoprofiling including serological, cellular, and molecular assessments supported by computational tools are key to not only identify correlates of protection but also biomarkers of disease susceptibility. The current study expands our previous cellular and serological profiling of vaccine-induced responses to a whole parasite malaria vaccine. The irradiated sporozoite model was chosen as it is considered the most effective vaccine against malaria. In contrast to whole blood transcriptomics analysis, we stimulated peripheral blood mononuclear cells (PBMC) with sporozoites and enriched for antigen-specific cells prior to conducting transcriptomics analysis. By focusing on transcriptional events triggered by antigen-specific stimulation, we were able to uncover quantitative and qualitative differences between protected and non-protected individuals to controlled human malaria infections and identified differentially expressed genes associated with sporozoite-specific responses. Further analyses including pathway and gene set enrichment analysis revealed that vaccination with irradiated sporozoites induced a transcriptomic profile associated with Th1-responses, Interferon-signaling, antigen-presentation, and inflammation. Analyzing longitudinal time points not only post-vaccination but also post-controlled human malaria infection further revealed that the transcriptomic profile of protected vs non-protected individuals was not static but continued to diverge over time. The results lay the foundation for comparing protective immune signatures induced by various vaccine platforms to uncover immune correlates of protection that are common across platforms.


Subject(s)
Insect Bites and Stings , Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum/genetics , Malaria, Falciparum/prevention & control , Leukocytes, Mononuclear , Immunization/methods , Vaccination/methods , Malaria/prevention & control , Sporozoites
6.
Front Immunol ; 14: 1216410, 2023.
Article in English | MEDLINE | ID: mdl-37753075

ABSTRACT

Introduction: As the SARS-CoV-2 pandemic continues to evolve, we face new variants of concern with a concurrent decline in vaccine booster uptake. We aimed to evaluate the difference in immunity gained from the original SARS-CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during pregnancy against recent variants of concern. Study Design: This is a retrospective analysis of previously collected samples from 192 patients who delivered between February 2021 and August 2021. Participants were categorized as 1) COVID vaccine: mRNA vaccine in pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was neutralizing capacity against wild-type, Delta, and Omicron-B1 between cohorts. Secondary outcomes include a comparison of cord-blood ID50 as well as the efficiency of vertical transfer, measured by cord-blood:maternal blood ID50 for each variant. Results: Pregnant women with COVID-19 vaccination had a greater spike in IgG titers compared to both those with COVID-19 disease exposure and controls. Both COVID exposure and vaccination resulted in immunity against Delta, but only COVID vaccination resulted in significantly greater Omicron ID-50 versus controls. The neutralizing capacity of serum from newborns was lower than that of their mothers, with COVID-vaccination demonstrating higher cord-blood ID50 vs wildtype and Delta variants compared to control or COVID-exposed, but neither COVID-exposure nor vaccination demonstrated significantly higher Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood ID50 with COVID vaccination compared to COVID-19 exposure for wild-type and Delta respectively. In pair-wise comparison, vertical transfer of neutralization capacity (cord-blood:maternal blood ID50) was greatest for wild-type and progressively reduced for Delta and Omicron ID50. Conclusion: Pregnant patients with either an initial mRNA vaccination series or COVID-exposure demonstrated reduced immunity against newer variants compared to wild-type as has been reported for non-pregnant individuals; however, the COVID-vaccination series afforded greater cross-variant immunity to pregnant women, specifically against Omicron, than COVID-disease. Vertical transfer of immunity is greater in those with COVID vaccination vs COVID disease exposure but is reduced with progressive variants. Our results reinforce the importance of bivalent booster vaccination in pregnancy for both maternal and infant protection and also provide a rationale for receiving updated vaccines as they become available.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Infant, Newborn , Pregnancy , Infant , Humans , Female , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Retrospective Studies , Vaccination , Mothers , Pregnancy Complications, Infectious/prevention & control
7.
J Extracell Biol ; 2(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37547182

ABSTRACT

HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neuroinflammatory demyelinating condition of the spinal cord. We have previously shown that aberrant expression and activity of immune checkpoint (ICP) molecules such as PD-1 and PD-L1/PD-L2, negatively associates with the cytolytic potential of T cells in individuals with HAM/TSP. Interestingly, ICPs can exist in a soluble cell-free form and can be carried on extracellular vesicles (EVs) and exosomes (small EVs, <300nm) while maintaining their immunomodulatory activity. Therefore, we investigated the role of soluble and exosomal ICPs in HTLV-1 associated neuroinflammation. For the very first time, we demonstrate a unique elevated presence of several stimulatory (CD27, CD28, 4-1BB) and inhibitory (BTLA, CTLA-4, LAG-3, PD-1, PD-L2) ICP receptors in HAM/TSP sera, and in purified exosomes from a HAM/TSP-derived HTLV-1-producing (OSP2) cells. These ICPs were found to be co-localized with the endosomal sorting complex required for transport (ESCRT) pathway proteins and exhibited functional binding with their respective ligands. Viral proteins and cytokines (primarily IFNγ) were found to be present in purified exosomes. IFNγ exposure enhanced the release of ICP molecules while antiretroviral drugs (Azidothymidine and Lopinavir) significantly inhibited this process. HTLV-1 b-Zip protein (HBZ) has been linked to factors that enhance EV release and concurrent knockdown here led to the reduced expression of ESCRT associated genes (eg. Hrs, Vsp4, Alix, Tsg101) as well as abrogated the release of ICP molecules, suggesting HBZ involvement in this process. Moreso, exosomes from OSP2 cells adversely affected CD8 T-cell functions by dimishing levels of cytokines and cytotoxic factors. Collectively, these findings highlight exosome-mediated immunmodulation of T-cell functions with HBZ and ESCRT pathways as an underlying mechanism in the context of HTLV-1-induced neuroinflammation.

8.
Wellcome Open Res ; 8: 135, 2023.
Article in English | MEDLINE | ID: mdl-37456919

ABSTRACT

Background: Measurement of antibody titers directed against mosquito salivary antigens in blood samples has been proposed as an outcome measure to assess human exposure to vector bites. However, only a handful of antigens have been identified and the specificity and longitudinal dynamics of antibody responses are not well known. We report the protocol of a clinical trial of controlled exposure to mosquito bites that aims to identify and validate biomarkers of exposure to bites of mosquito vector species that transmit malaria and dengue in Southeast Asia and some other parts of the world. Methods: This study is an exploratory factorial randomized control trial of controlled exposure to mosquito bites with 10 arms corresponding to different species ( Aedes aegypti, Ae. albopictus, Anopheles dirus, An. maculatus and An. minimus) and numbers of bites (35 or 305 bites in total over 6 weeks). Blood samples will be collected from study participants before, during and after mosquito biting challenges. Candidate peptides will be identified from published literature with antigen prediction algorithms using mosquito DNA sequence data and with immunoblotting assays carried out using protein extracts of dissected mosquito salivary glands and participants samples. Antibody titers against candidate peptides will be determined in participants samples with high-throughput cutting-edge immuno-assays. Quantification of the antibody response profile over time (including an estimate of the decay rate) and the effect of the number of bites on the antibody response will be determined using linear and logistic mixed-effects models for the continuous and the binary response, respectively. Conclusion: This research is expected to generate important knowledge for vector sero-surveillance and evaluation of vector-control interventions against malaria and dengue in the Greater Mekong Subregion. Registration: This study is registered with clinicaltrials.gov (NCT04478370) on July 20 th, 2020.

9.
NPJ Vaccines ; 8(1): 43, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934088

ABSTRACT

This study demonstrates the impact of adjuvant on the development of T follicular helper (Tfh) and B cells, and their influence on antibody responses in mice vaccinated with SARS-CoV-2-spike-ferritin-nanoparticle (SpFN) adjuvanted with either Army Liposome Formulation containing QS-21 (SpFN + ALFQ) or Alhydrogel® (SpFN + AH). SpFN + ALFQ increased the size and frequency of germinal center (GC) B cells in the vaccine-draining lymph nodes and increased the frequency of antigen-specific naive B cells. A single vaccination with SpFN + ALFQ resulted in a higher frequency of IL-21-producing-spike-specific Tfh and GC B cells in the draining lymph nodes and spleen, S-2P protein-specific IgM and IgG antibodies, and elicitation of robust cross-neutralizing antibodies against SARS-CoV-2 variants as early as day 7, which was enhanced by a second vaccination. This was associated with the generation of high titer, high avidity binding antibodies. The third vaccination with SpFN + ALFQ elicited high levels of neutralizing antibodies against the Omicron variant. No cross-neutralizing antibodies against Omicron were induced with SpFN + AH. These findings highlight the importance of ALFQ in orchestrating early induction of antigen-specific Tfh and GC B cell responses and long-lived plasma cells in the bone marrow. The early engagement of S-2P specific naive B cells and high titer IgM antibodies shape the development of long-term neutralization breadth.

10.
Vaccines (Basel) ; 10(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36298634

ABSTRACT

The onset of an adaptive immune response provides the signals required for differentiation of antigen-specific lymphocytes into effector cells and imprinting of these cells for re-circulation to the most appropriate anatomical site (i.e., homing). Lymphocyte homing is governed by the expression of tissue-specific lymphocyte homing receptors that bind to unique tissue-specific ligands on endothelial cells. In this study, a whole-parasite malaria vaccine (radiation-attenuated sporozoites (RAS)) was used as a model system to establish homing receptor signatures induced by the parasite delivered through mosquito bite to provide a benchmark of desirable homing receptors for malaria vaccine developers. This immunization regimen resulted in the priming of antigen-specific B cells and CD8+ T cells for homing primarily to the skin and T/B cell compartments of secondary lymphoid organs. Infection with live sporozoites, however, triggers the upregulation of homing receptor for the liver and the skin, demonstrating that there is a difference in the signal provided by attenuated vs. live sporozoites. This is the first report on imprinting of homing routes by Plasmodium sporozoites and, surprisingly, it also points to additional, yet to be identified, signals provided by live parasites that prime lymphocytes for homing to the liver. The data also demonstrate the utility of this method for assessing the potential of vaccine formulations to direct antigen-specific lymphocytes to the most relevant anatomical site, thus potentially impacting vaccine efficacy.

11.
Front Microbiol ; 13: 1001169, 2022.
Article in English | MEDLINE | ID: mdl-36312975

ABSTRACT

Hypervirulent Klebsiella pneumoniae (hvKp) is more invasive and virulent than classical K. pneumoniae, and requires specialized treatment. To raise clinical awareness, this study determined the prevalence, clinical characteristics, and genomic epidemiology of hvKp infections in Southern California (SoCal) by conducting a passive surveillance in a single large academic medical center. We report here that hvKp infections were more common than expected, accounting for 2.6% of invasive K. pneumoniae infections, and presented with a wide disease spectrum, occasionally mimicking tumors, even co-infecting a COVID-19 patient. Most infections were community acquired with no recent international travel, suggesting hvKp strains are circulating in the community. Genomic analysis revealed genetic diversity, with the K1-ST23 lineage predominating but not clonal, and multiple sequence types of K2 including a SoCal unique K2-ST66 sublineage that had been unrecognized. Our findings highlight the urgency of heightened awareness of hvKp infection in the US, the need for rapid diagnosis of hvKp, and the necessity of implementing robust surveillance programs for hvKp at the institutional or local level.

12.
Front Med (Lausanne) ; 9: 991807, 2022.
Article in English | MEDLINE | ID: mdl-36314027

ABSTRACT

The impact of pre-existing immunity on the efficacy of artemisinin combination therapy is largely unknown. We performed in-depth profiling of serological responses in a therapeutic efficacy study [comparing artesunate-mefloquine (ASMQ) and artemether-lumefantrine (AL)] using a proteomic microarray. Responses to over 200 Plasmodium antigens were significantly associated with ASMQ treatment outcome but not AL. We used machine learning to develop predictive models of treatment outcome based on the immunoprofile data. The models predict treatment outcome for ASMQ with high (72-85%) accuracy, but could not predict treatment outcome for AL. This divergent treatment outcome suggests that humoral immunity may synergize with the longer mefloquine half-life to provide a prophylactic effect at 28-42 days post-treatment, which was further supported by simulated pharmacokinetic profiling. Our computational approach and modeling revealed the synergistic effect of pre-existing immunity in patients with drug combination that has an extended efficacy on providing long term treatment efficacy of ASMQ.

13.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36055874

ABSTRACT

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Adjuvants, Immunologic/adverse effects , Adult , Antibodies, Protozoan , Humans , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Protozoan Proteins
14.
Vaccine ; 40(31): 4270-4280, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35697572

ABSTRACT

Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Norovirus , Animals , Antibodies, Protozoan , Epitopes , Malaria, Falciparum/prevention & control , Mice , Plasmodium falciparum , Protozoan Proteins/genetics , Sporozoites
16.
Sci Rep ; 12(1): 7570, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534646

ABSTRACT

Monocyte-derived macrophages (MDM) are highly permissive to HIV-1 infection potentially due to the downregulation of innate factors during the differentiation process. The environmental milieu and innate anti-viral factors which are modulated during macrophage differentiation, have been associated with their increased permissiveness to HIV-1 infection. Here, we demonstrate that the Army Liposome Formulation containing MPLA, and QS-21 (ALFQ) activated MDM that are normally permissive to HIV-1 infection to generate a proinflammatory environment and upregulated anti-viral factors notably APOBEC3A. Induction of APOBEC3A by ALFQ decreased permissiveness to HIV-1 infection, while knockdown of APOBEC3A with APOBEC3AsiRNA resulted in a significant loss in the restriction of HIV-1 infectivity. The liposome formulation ALF55, with identical lipid composition but lacking QS-21 had no effect. Furthermore, the capacity of ALFQ to modulate MDM permissiveness to HIV-1 infection was predominantly mediated by large ALFQ liposomes. Our findings highlight a relationship between innate immune activation, proinflammatory milieu, and upregulation of anti-HIV proteins. Induction of these responses can switch the HIV-1 permissive MDM into a more refractory phenotype.


Subject(s)
HIV Infections , HIV-1 , Cytidine Deaminase , HIV Infections/metabolism , HIV-1/genetics , Humans , Liposomes/metabolism , Macrophages/metabolism , Proteins , Saponins , Virus Replication
17.
Clin Infect Dis ; 75(10): 1834-1837, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35594548

ABSTRACT

Human immunodeficiency virus (HIV) and malaria infection rates overlap across sub-Saharan Africa, but factors influencing their co-occurrence are unclear. In a case-control study, we investigated whether malaria exposure increases risk of type 1 (HIV-1) acquisition. Prior to seroconverting, HIV-positive cases had significantly higher malaria-associated antibodies compared to HIV-negative controls, linking malaria exposure to HIV-1 acquisition.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Malaria , Humans , Case-Control Studies , Malaria/epidemiology , HIV Infections/complications , HIV Infections/epidemiology , Antibodies, Protozoan
18.
Front Bioeng Biotechnol ; 10: 821169, 2022.
Article in English | MEDLINE | ID: mdl-35392409

ABSTRACT

Explosive devices, either conventional or improvised, are common sources of injuries during combat, civil unrest, and terror attacks, resulting in trauma from exposure to blast. A blast wave (BW), a near-instantaneous rise in pressure followed by a negative pressure, propagates through the body in milliseconds and can affect physiology for days/months after exposure. Epidemiological data show that blast-related casualties result in significantly higher susceptibility to wound infections, suggesting long-lasting immune modulatory effects from blast exposure. The mechanisms involved in BW-induced immune changes are poorly understood. We evaluated the effects of BW on the immune system using an established murine model. Animals were exposed to BWs (using an Advanced Blast Simulator), followed by longitudinally sampling for 14 days. Blood, bone marrow, and spleen were analyzed for changes in the 1) complete blood count (CBC), and 2) composition of bone marrow cells (BMC) and splenocytes, and 3) concentrations of systemic cytokines/chemokines. Our data demonstrate that BW results in transient bone marrow failure and long-term changes in the frequency and profile of progenitor cell populations. Viability progressively decreased in hematopoietic stem cells and pluripotent progenitor cells. Significant decrease of CD4+ T cells in the spleen indicates reduced functionality of adaptive immune system. Dynamic changes in the concentrations of several cytokines and chemokines such as IL-1α and IL-17 occurred potentially contributing to dysregulation of immune response after trauma. This work lays the foundation for identifying the potential mechanisms behind BW's immunosuppressive effects to inform the recognition of this compromised status is crucial for the development of therapeutic interventions for infections to reduce recovery time of wounded patients injured by explosive devices.

19.
J Clin Med ; 11(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35407447

ABSTRACT

Reliably assessing exposure to mosquitoes carrying malaria parasites continues to be a challenge due to the lack of reliable, highly sensitive diagnostics with high-throughput potential. Here, we describe an approach that meets these requirements by simultaneously measuring immune responses to both disease vector and pathogen, using an electro-chemiluminescence-based multiplex assay platform. While using the same logistical steps as a classic ELISA, this platform allows for the multiplexing of up to ten antigens in a single well. This simple, reproducible, quantitative readout reports the magnitude, incidence, and prevalence of malaria infections in residents of malaria-endemic areas. By reporting exposure to both insect vectors and pathogen, the approach also provides insights into the efficacy of drugs and/or other countermeasures deployed against insect vectors aimed at reducing or eliminating arthropod-borne diseases. The high throughput of the assay enables the quick and efficient screening of sera from individuals for exposure to Plasmodium even if they are taking drug prophylaxis. We applied this assay to samples collected from controlled malaria infection studies, as well as those collected in field studies in malaria-endemic regions in Uganda and Kenya. The assay was sensitive to vector exposure, malaria infection, and endemicity, demonstrating its potential for use in malaria serosurveillance.

20.
Vaccines (Basel) ; 10(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35062785

ABSTRACT

Immune correlates of protection remain elusive for most vaccines. An identified immune correlate would accelerate the down-selection of vaccine formulations by reducing the need for human pathogen challenge studies that are currently required to determine vaccine efficacy. Immunization via mosquito-delivered, radiation-attenuated P. falciparum sporozoites (IMRAS) is a well-established model for efficacious malaria vaccines, inducing greater than 90% sterile immunity. The current immunoprofiling study utilized samples from a clinical trial in which vaccine dosing was adjusted to achieve only 50% protection, thus enabling a comparison between protective and non-protective immune signatures. In-depth immunoprofiling was conducted by assessing a wide range of antigen-specific serological and cellular parameters and applying our newly developed computational tools, including machine learning. The computational component of the study pinpointed previously un-identified cellular T cell subsets (namely, TNFα-secreting CD8+CXCR3-CCR6- T cells, IFNγ-secreting CD8+CCR6+ T cells and TNFα/FNγ-secreting CD4+CXCR3-CCR6- T cells) and B cell subsets (i.e., CD19+CD24hiCD38hiCD69+ transitional B cells) as important factors predictive of protection (92% accuracy). Our study emphasizes the need for in-depth immunoprofiling and subsequent data integration with computational tools to identify immune correlates of protection. The described process of computational data analysis is applicable to other disease and vaccine models.

SELECTION OF CITATIONS
SEARCH DETAIL
...