Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 16(4): e0010413, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35472148

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pntd.0009273.].

2.
PLoS Negl Trop Dis ; 15(10): e0009837, 2021 10.
Article in English | MEDLINE | ID: mdl-34695125

ABSTRACT

Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. Arrival of RVFV into the United States by infected mosquitoes or humans could result in significant impacts on food security, human health, and wildlife health. Elucidation of the vectors involved in the post-introduction RVFV ecology is paramount to rapid implementation of vector control. We performed vector competence experiments in which field-collected mosquitoes were orally exposed to an epidemic strain of RVFV via infectious blood meals. We targeted floodwater Aedes species known to feed on cattle, and/or deer species (Aedes melanimon Dyar, Aedes increpitus Dyar, Aedes vexans [Meigen]). Two permanent-water-breeding species were targeted as well: Culiseta inornata (Williston) of unknown competence considering United States populations, and Culex tarsalis Coquillett as a control species for which transmission efficiency is known. We tested the potential for midgut infection, midgut escape (dissemination), ovarian infection (vertical transmission), and transmission by bite (infectious saliva). Tissues were assayed by plaque assay and RT-qPCR, to quantify infectious virus and confirm virus identity. Tissue infection data were analyzed using a within-host model under a Bayesian framework to determine the probabilities of infection outcomes (midgut-limited infection, disseminated infection, etc.) while estimating barriers to infection between tissues. Permanent-water-breeding mosquitoes (Cx. tarsalis and Cs. inornata) exhibited more efficient horizontal transmission, as well as potential for vertical transmission, which is contrary to the current assumptions of RVFV ecology. Barrier estimates trended higher for Aedes spp., suggesting systemic factors in the differences between these species and Cx. tarsalis and Cs. inornata. These data indicate higher potential for vertical transmission than previously appreciated, and support the consensus of RVFV transmission including a broad range of potential vectors.


Subject(s)
Aedes/virology , Culex/virology , Mosquito Vectors/virology , Rift Valley Fever/transmission , Rift Valley fever virus/physiology , Aedes/genetics , Aedes/physiology , Animals , Cattle/virology , Colorado , Culex/physiology , Deer/virology , Mosquito Vectors/classification , Mosquito Vectors/physiology , Rift Valley Fever/virology , Rift Valley fever virus/genetics , Rift Valley fever virus/isolation & purification , Saliva/virology
3.
Virology ; 562: 50-62, 2021 10.
Article in English | MEDLINE | ID: mdl-34256244

ABSTRACT

We describe the isolation and characterization of a novel insect-specific flavivirus (ISFV), tentatively named Aripo virus (ARPV), that was isolated from Psorophora albipes mosquitoes collected in Trinidad. The ARPV genome was determined and phylogenetic analyses showed that it is a dual host associated ISFV, and clusters with the main mosquito-borne flaviviruses. ARPV antigen was significantly cross-reactive with Japanese encephalitis virus serogroup antisera, with significant cross-reactivity to Ilheus and West Nile virus (WNV). Results suggest that ARPV replication is limited to mosquitoes, as it did not replicate in the sandfly, culicoides or vertebrate cell lines tested. We also demonstrated that ARPV is endocytosed into vertebrate cells and is highly immunomodulatory, producing a robust innate immune response despite its inability to replicate in vertebrate systems. We show that prior infection or coinfection with ARPV limits WNV-induced disease in mouse models, likely the result of a robust ARPV-induced type I interferon response.


Subject(s)
Flavivirus/immunology , Immunomodulation , Insect Viruses/immunology , Vertebrates/immunology , Animals , Antigens, Viral/immunology , Cross Reactions , Culicidae/virology , Disease Models, Animal , Flavivirus/genetics , Flavivirus/isolation & purification , Flavivirus/pathogenicity , Genome, Viral/genetics , Host Specificity , Immunity, Innate , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/pathogenicity , Macrophages/immunology , Mice , Phylogeny , Vertebrates/virology , Viral Interference , Virus Replication , West Nile Fever/immunology , West Nile virus/immunology , West Nile virus/pathogenicity
4.
PLoS Negl Trop Dis ; 15(3): e0009273, 2021 03.
Article in English | MEDLINE | ID: mdl-33750981

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-transmitted virus with proven ability to emerge into naïve geographic areas. Limited field evidence suggests that RVFV is transmitted vertically from parent mosquito to offspring, but until now this mechanism has not been confirmed in the laboratory. Furthermore, this transmission mechanism has allowed for the prediction of RVFV epizootics based on rainfall patterns collected from satellite information. However, in spite of the relevance to the initiation of epizootic events, laboratory confirmation of vertical transmission has remained an elusive research aim for thirty-five years. Herein we present preliminary evidence of the vertical transmission of RVFV by Culex tarsalis mosquitoes after oral exposure to RVFV. Progeny from three successive gonotrophic cycles were reared to adults, with infectious RVFV confirmed in each developmental stage. Virus was detected in ovarian tissues of parental mosquitoes 7 days after imbibing an infectious bloodmeal. Infection was confirmed in progeny as early as the first gonotrophic cycle, with infection rates ranging from 2.0-10.0%. Virus titers among progeny were low, which may indicate a host mechanism suppressing replication.


Subject(s)
Culex/virology , Infectious Disease Transmission, Vertical , Mosquito Vectors/virology , Rift Valley Fever/transmission , Animals , Female , Humans , Male , Mosquito Vectors/classification , Ovary/virology , Rift Valley fever virus/isolation & purification , Viral Load
5.
PLoS Pathog ; 17(3): e1009315, 2021 03.
Article in English | MEDLINE | ID: mdl-33647063

ABSTRACT

Bunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that include important human, veterinary, and plant pathogens. The rapid characterization of known and new emerging pathogens depends on the availability of comprehensive reference sequence databases that can be used to match unknowns, infer evolutionary relationships and pathogenic potential, and make response decisions in an evidence-based manner. In this study, we determined the coding-complete genome sequences of 99 bunyaviruses in the Centers for Disease Control and Prevention's Arbovirus Reference Collection, focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae), and phleboviruses (Phenuiviridae) that either completely or partially lacked genome sequences. These viruses had been collected over 66 years from 27 countries from vertebrates and arthropods representing 37 genera. Many of the viruses had been characterized serologically and through experimental infection of animals but were isolated in the pre-sequencing era. We took advantage of our unusually large sample size to systematically evaluate genomic characteristics of these viruses, including reassortment, and co-infection. We corroborated our findings using several independent molecular and virologic approaches, including Sanger sequencing of 197 genome segments, and plaque isolation of viruses from putative co-infected virus stocks. This study contributes to the described genetic diversity of bunyaviruses and will enhance the capacity to characterize emerging human pathogenic bunyaviruses.


Subject(s)
Genome, Viral/genetics , Nairovirus/genetics , Orthobunyavirus/genetics , RNA Viruses/genetics , Animals , Arboviruses/genetics , Arthropods/genetics , Base Sequence , Humans , Phylogeny
6.
Vaccines (Basel) ; 8(3)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887313

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a re-emerging virus of human, agriculture, and bioweapon threat importance. No FDA-approved treatment is available to combat Venezuelan equine encephalitis in humans, prompting the need to create a vaccine that is safe, efficacious, and cannot be replicated in the mosquito vector. Here we describe the use of a serotype ID VEEV (ZPC-738) vaccine with an internal ribosome entry site (IRES) to alter gene expression patterns. This ZPC/IRES vaccine was genetically engineered in two ways based on the position of the IRES insertion to create a vaccine that is safe and efficacious. After a single dose, both versions of the ZPC/IRES vaccine elicited neutralizing antibody responses in mice and non-human primates after a single dose, with more robust responses produced by version 2. Further, all mice and primates were protected from viremia following VEEV challenge. These vaccines were also safer in neonatal mice than the current investigational new drug vaccine, TC-83. These results show that IRES-based attenuation of alphavirus genomes consistently produce promising vaccine candidates, with VEEV/IRES version 2 showing promise for further development.

7.
Microorganisms ; 8(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752150

ABSTRACT

Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.

8.
PLoS Pathog ; 16(2): e1008102, 2020 02.
Article in English | MEDLINE | ID: mdl-32027727

ABSTRACT

Understanding the circumstances under which arboviruses emerge is critical for the development of targeted control and prevention strategies. This is highlighted by the emergence of chikungunya and Zika viruses in the New World. However, to comprehensively understand the ways in which viruses emerge and persist, factors influencing reductions in virus activity must also be understood. Western equine encephalitis virus (WEEV), which declined during the late 20th century in apparent enzootic circulation as well as equine and human disease incidence, provides a unique case study on how reductions in virus activity can be understood by studying evolutionary trends and mechanisms. Previously, we showed using phylogenetics that during this period of decline, six amino acid residues appeared to be positively selected. To assess more directly the effect of these mutations, we utilized reverse genetics and competition fitness assays in the enzootic host and vector (house sparrows and Culex tarsalis mosquitoes). We observed that the mutations contemporary with reductions in WEEV circulation and disease that were non-conserved with respect to amino acid properties had a positive effect on enzootic fitness. We also assessed the effects of these mutations on virulence in the Syrian-Golden hamster model in relation to a general trend of increased virulence in older isolates. However, no change effect on virulence was observed based on these mutations. Thus, while WEEV apparently underwent positive selection for infection of enzootic hosts, residues associated with mammalian virulence were likely eliminated from the population by genetic drift or negative selection. These findings suggest that ecologic factors rather than fitness for natural transmission likely caused decreased levels of enzootic WEEV circulation during the late 20th century.


Subject(s)
Encephalitis Virus, Western Equine/genetics , Encephalomyelitis, Equine/genetics , Genetic Drift , Selection, Genetic , Animals , Culex/immunology , Culex/virology , Encephalitis Virus, Western Equine/immunology , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/pathology , Encephalomyelitis, Equine/transmission , Humans , Mesocricetus , Mosquito Vectors/immunology , Mosquito Vectors/virology , Sparrows/immunology , Sparrows/virology
9.
J Virol Methods ; 276: 113794, 2020 02.
Article in English | MEDLINE | ID: mdl-31794780

ABSTRACT

Ensuring the successful inactivation of select agent material is critical for maintaining compliance with federal regulations and safeguarding laboratory personnel from exposure to dangerous pathogens. Rift Valley fever virus (RVFV), naturally transmitted by mosquitoes, is classified as a select agent by the CDC and USDA due to its potential to cause significant economic losses to the livestock industry and its demonstrated potential to emerge into naïve geographic areas. Herein we describe several effective inactivation procedures for RVFV infected mosquito samples. We also demonstrate the vaccine strain MP-12 can be used as an appropriate analog for inactivation testing and describe a method of validating inactivation using Amicon filters. Briefly, we show the following inactivation methods are all effective at inactivating RVFV and MP-12 by following the manufacturers'/established protocols: 4 % paraformaldehyde, Trizol LS (ThermoFisher Scientific), MagMAX™-96 Viral RNA Isolation Kit (ThermoFisher Scientific), and Mag-Bind® Viral DNA/RNA 96 Kit (Omega Bio-Tek).


Subject(s)
Culex/virology , Rift Valley fever virus/drug effects , Rift Valley fever virus/physiology , Virology/methods , Virus Inactivation , Animals , Chlorocebus aethiops , Culex/drug effects , Vero Cells
10.
Insect Biochem Mol Biol ; 111: 103169, 2019 08.
Article in English | MEDLINE | ID: mdl-31103782

ABSTRACT

The yellow fever mosquito, Aedes aegypti, serves as the primary vector for epidemic transmission of yellow fever, dengue, Zika (ZIKV), and chikungunya viruses to humans. Control of Ae. aegypti is currently limited to insecticide applications and larval habitat management; however, to combat growing challenges with insecticide resistance, novel genetic approaches for vector population reduction or transmission interruption are being aggressively pursued. The objectives of this study were to assess the ability of the Ae. aegypti antiviral exogenous-small interfering RNA (exo-siRNA) response to inhibit ZIKV infection and transmission, and to identify the optimal RNA interference (RNAi) target region in the ZIKV genome. We accomplished these objectives by in vitro transcription of five long double-stranded RNAs (dsRNAs) from the genome region spanning the NS2B-NS3-NS4A genes, which were the most highly conserved among ZIKV RNA sequences representing both East and West African and Asian-American clades, and evaluation of the ability of these dsRNAs to trigger an effective antiviral exo-siRNA response after intrathoracic injection into Ae. aegypti. In a pilot study, five ZIKV dsRNAs were tested by intrathoracic inoculation of 250 ng dsRNA into groups of approximately 5-day-old mosquitoes. Three days post-inoculation, mosquitoes were provided an infectious blood-meal containing ZIKV strain PRVABC59 (Puerto Rico), MR766 (Uganda), or 41525 (Senegal). On days 7 and 14 post-infection individual whole mosquito bodies were assessed for ZIKV infectious titer by plaque assays. Based on the results of this initial assessment, three dsRNAs were selected for further evaluation of viral loads of matched body and saliva expectorants using a standardized infectious dose of 1 × 107 PFU/mL of each ZIKV strain. Fourteen days post-exposure to ZIKV, paired saliva and carcass samples were harvested from individual mosquitoes and assessed for ZIKV RNA load by qRT-PCR. Injection of each of the three dsRNAs resulted in significant inhibition of replication of all three strains of ZIKV in mosquito bodies and saliva. This study lays critical groundwork for pursuing ZIKV transmission-blocking strategies that exploit the Ae. aegypti exo-siRNA response for arbovirus suppression in natural populations.


Subject(s)
Aedes/virology , RNA Interference , Zika Virus Infection/transmission , Zika Virus/genetics , Animals , Cattle , Chlorocebus aethiops , Mosquito Vectors/virology , Pilot Projects , RNA, Double-Stranded , RNA, Small Interfering , Saliva/virology , Sequence Analysis, RNA , Vero Cells , Viral Load , Virus Replication , Zika Virus/physiology , Zika Virus Infection/virology
11.
Transbound Emerg Dis ; 66(4): 1709-1717, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31002468

ABSTRACT

Rift Valley fever virus (RVFV) poses a major threat of introduction to several continents, including North America. Such an introduction could cause significant losses to the livestock industry, in addition to substantial human morbidity and mortality. Because of the opportunistic blood host selection of Culex tarsalis mosquitoes, we hypothesized that this species could be an important bridge vector of RVFV near feedlots in the event of an introduction. We investigated the mosquito community composition at livestock feedlots and surrounding natural and residential areas to determine differences in mosquito relative abundance and blood feeding patterns attributed to cattle feeding operations. DNA extracted from abdomens of blood-fed mosquitoes were sequenced to determine host identity. Multivariate regression analyses revealed differences between mosquito community assemblages at feedlots and non-feedlot sites (p < 0.05), with this effect driven largely by differential abundances of Aedes vexans (padj  < 0.05). Mosquito diversity was lower on feedlots than surrounding areas for three out of four feedlots. Culex tarsalis was abundant at both feedlots and nearby sites. Diverse vertebrate blood meals were detected in Cx. tarsalis at non-feedlot sites, with a shift towards feeding on cattle at feedlots. These data support a potential for Cx. tarsalis to serve as a bridge vector of RVFV between livestock and humans in Colorado.


Subject(s)
Aedes/virology , Cattle Diseases/transmission , Culex/virology , Mosquito Vectors/virology , Rift Valley Fever/transmission , Rift Valley fever virus/physiology , Sheep Diseases/transmission , Animal Husbandry , Animals , Cattle , Colorado , Livestock , Sheep
12.
Viruses ; 11(3)2019 03 02.
Article in English | MEDLINE | ID: mdl-30832334

ABSTRACT

While serological and virological evidence documents the exposure of bats to medically-important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (106⁻107 PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Orbivirus/classification , Virus Replication , Animals , Cell Line , Chlorocebus aethiops , Genome, Viral , Open Reading Frames , Orbivirus/isolation & purification , Orbivirus/physiology , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Vero Cells , Viral Proteins/genetics , Whole Genome Sequencing
13.
J Med Entomol ; 56(2): 584-588, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30535264

ABSTRACT

Western equine encephalitis (WEE) was once prevalent and routinely isolated from mosquitoes in Colorado; however, isolations of Western equine encephalitis virus (WEEV) have not been reported from mosquito pools since the early 1990s. The objective of the present study was to test pools of Culex tarsalis (Coquillett) mosquitoes sampled from Weld County, CO, in 2016 for evidence of WEEV infection. Over 7,000 mosquitoes were tested, but none were positive for WEEV RNA. These data indicate that WEEV either was not circulating enzootically in Northern Colorado, was very rare, and would require much more extensive mosquito sampling to detect, or was heterogeneously distributed spatially and temporally and happened to not be present in the area sampled during 2016. Even though the reported incidence of WEE remains null, screening for WEEV viral RNA in mosquito vectors offers forewarning toward the detection and prevention of future outbreaks.


Subject(s)
Culex/virology , Encephalitis Virus, Western Equine , Mosquito Vectors/virology , Animals , Colorado , Female
14.
Insects ; 9(4)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486417

ABSTRACT

Transovarial transmission (TOT) is a widespread and efficient process through which pathogens can be passed between generations of arthropod vectors. Many species within the order Bunyavirales utilize TOT as a means of persisting within the environment when classical horizontal transmission is not possible due to ecological constraints. The purpose of this review is to summarize previous findings regarding the ecological significance of TOT among viruses in the order Bunyavirales and identify the gaps in knowledge regarding this important mechanism of arboviral maintenance.

15.
mBio ; 9(2)2018 03 06.
Article in English | MEDLINE | ID: mdl-29511072

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging arbovirus capable of causing explosive outbreaks of febrile illness, polyarthritis, and polyarthralgia, inflicting severe morbidity on affected populations. CHIKV can be genetically classified into 3 major lineages: West African (WA); East, Central, and South African (ECSA); Indian Ocean (IOL); and Asian. Additionally, the Indian Ocean (IOL) sublineage emerged within the ECSA clade and the Asian/American sublineage emerged within the Asian clade. While differences in epidemiological and pathological characteristics among outbreaks involving different CHIKV lineages and sublineages have been suggested, few targeted investigations comparing lineage virulence levels have been reported. We compared the virulence levels of CHIKV isolates representing all major lineages and sublineages in the type I interferon receptor-knockout A129 mouse model and found lineage-specific differences in virulence. We also evaluated the cross-protective efficacy of the IOL-derived, live-attenuated vaccine strain CHIKV/IRESv1 against the Asian/American CHIKV isolate YO123223 in both murine and nonhuman primate models, as well as the WA strain SH2830 in a murine model. The CHIKV/IRES vaccine provided protection both in mice and in nonhuman primate cohorts against Caribbean strain challenge and protected mice against WA challenge. Taken together, our data suggest that Asian/American CHIKV strains are less virulent than those in the Asian, ECSA, and WA lineages and that despite differences in virulence, IOL-based vaccine strains offer robust cross-protection against strains from other lineages. Further research is needed to elucidate the genetic basis for variation in CHIKV virulence in the A129 mouse model and to corroborate this variation with human pathogenicity.IMPORTANCE Chikungunya virus (CHIKV) is a reemerging human pathogen capable of causing debilitating and disfiguring polyarthritis, which can last for months to years after initial fever has resolved. There are four major genetic lineages of CHIKV, as well as two recently emerged sublineages, none of which have been evaluated for differences in virulence. Moreover, the ability of chikungunya vaccines to cross-protect against heterologous CHIKV lineages has not been explored. Therefore, we sought to compare the virulence levels among CHIKV lineages, as well as to evaluate the cross-protective efficacy of the CHIKV/IRESv1 vaccine candidate, in two different models of CHIKV infection. Our results suggest that, although significant differences in virulence were observed among CHIKV lineages, the CHIKV/IRESv1 vaccine elicits cross-lineage protective immunity. These findings provide valuable information for predicting the severity of CHIKV-associated morbidity in future outbreaks, as well as vaccine development considerations.


Subject(s)
Chikungunya virus/pathogenicity , Alphavirus/genetics , Alphavirus/immunology , Alphavirus/pathogenicity , Animals , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/immunology , Mice , Mice, Mutant Strains , Primates , Viral Vaccines/therapeutic use , Virulence/genetics
16.
Hum Vaccin Immunother ; 14(4): 994-1002, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29206076

ABSTRACT

V920, rVSVΔG-ZEBOV-GP, is a recombinant vesicular stomatitis-Zaire ebolavirus vaccine which has shown an acceptable safety profile and provides a protective immune response against Ebola virus disease (EVD) induced by Zaire ebolavirus in humans. The purpose of this study was to determine whether the V920 vaccine is capable of replicating in arthropod cell cultures of relevant vector species and of replicating in live mosquitoes. While the V920 vaccine replicated well in Vero cells, no replication was observed in Anopheles or Aedes mosquito, Culicoides biting midge, or Lutzomyia sand fly cells, nor in live Culex or Aedes mosquitoes following exposure through intrathoracic inoculation or feeding on a high-titer infectious blood meal. The insect taxa selected for use in this study represent actual and potential epidemic vectors of VSV. V920 vaccine inoculated into Cx. quinquefasciatus and Ae. aegypti mosquitoes demonstrated persistence of replication-competent virus following inoculation, consistent with the recognized biological stability of the vaccine, but no evidence for active virus replication in live mosquitoes was observed. Following administration of an infectious blood meal to Ae. aegypti and Cx. quinquefasciatus mosquitoes at a titer several log10 PFU more concentrated than would be observed in vaccinated individuals, no infection or dissemination of V920 was observed in either mosquito species. In vitro and in vivo data gathered during this study support minimal risk of the vector-borne potential of the V920 vaccine.


Subject(s)
Arthropods/immunology , Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Mosquito Vectors/immunology , Vaccines, Synthetic/immunology , Viral Envelope Proteins/immunology , Aedes/immunology , Aedes/virology , Animals , Arthropods/virology , Chlorocebus aethiops , Culex/immunology , Culex/virology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Vero Cells , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology
17.
Am J Trop Med Hyg ; 96(6): 1338-1340, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28719283

ABSTRACT

AbstractStarting in 2013-2014, the Americas have experienced a massive outbreak of Zika virus (ZIKV) which has now reached at least 49 countries. Although most cases have occurred in South America and the Caribbean, imported and autochthonous cases have occurred in the United States. Aedes aegypti and Aedes albopictus mosquitoes are known vectors of ZIKV. Little is known about the potential for temperate Aedes mosquitoes to transmit ZIKV. Aedes vexans has a worldwide distribution, is highly abundant in particular localities, aggressively bites humans, and is a competent vector of several arboviruses. However, it is not clear whether Ae. vexans mosquitoes are competent to transmit ZIKV. To determine the vector competence of Ae. vexans for ZIKV, wild-caught mosquitoes were exposed to an infectious bloodmeal containing a ZIKV strain isolated during the current outbreak. Approximately 80% of 148 mosquitoes tested became infected by ZIKV, and approximately 5% transmitted infectious virus after 14 days of extrinsic incubation. These results establish that Ae. vexans are competent ZIKV vectors. Their relative importance as vectors (i.e., their vectorial capacity) depends on feeding behavior, longevity, and other factors that are likely to vary in ecologically distinct environments.


Subject(s)
Aedes/virology , Disease Outbreaks , Insect Vectors/virology , Zika Virus Infection/epidemiology , Zika Virus/isolation & purification , Animals , Female , Humans , North America , Saliva/virology , Zika Virus Infection/virology
18.
PLoS Negl Trop Dis ; 11(1): e0005187, 2017 01.
Article in English | MEDLINE | ID: mdl-28081143

ABSTRACT

We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway's antiviral role.


Subject(s)
Aedes/genetics , Dengue Virus/physiology , Dengue/transmission , Insect Proteins/immunology , Insect Vectors/genetics , Janus Kinases/immunology , STAT Transcription Factors/immunology , Aedes/immunology , Aedes/virology , Animals , Dengue/virology , Fat Body/immunology , Genetic Engineering , Humans , Insect Proteins/genetics , Insect Vectors/immunology , Insect Vectors/virology , Janus Kinases/genetics , Mice , STAT Transcription Factors/genetics
19.
PLoS Negl Trop Dis ; 9(9): e0004007, 2015.
Article in English | MEDLINE | ID: mdl-26340754

ABSTRACT

We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/ß receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.


Subject(s)
Chikungunya Fever/prevention & control , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Animal Structures/virology , Animals , Body Weight , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya virus/isolation & purification , Chikungunya virus/physiology , Drug Evaluation, Preclinical , Drug Stability , Female , Immunocompromised Host , Male , Mice , Survival Analysis , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Viral Load , Viral Vaccines/administration & dosage , Virulence
20.
PLoS Negl Trop Dis ; 9(5): e0003797, 2015 May.
Article in English | MEDLINE | ID: mdl-26020513

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas that is responsible for severe, sometimes fatal, disease in humans and horses. We previously described an IRES-based VEE vaccine candidate based up the IE serotype that offers complete protection against a lethal subtype IE VEEV challenge in mice. Here we demonstrate the IRES-based vaccine's ability to protect against febrile disease in cynomolgus macaques. Vaccination was well tolerated and elicited robust neutralizing antibody titers noticed as early as day 14. Moreover, complete protection from disease characterized by absence of viremia and characteristic fever following aerosolized IE VEEV challenge was observed in all vaccinees compared to control animals, which developed clinical disease. Together, these results highlight the safety and efficacy of IRES-based VEEV vaccine to protect against an endemic, pathogenic VEEV IE serotype.


Subject(s)
Antibodies, Viral/blood , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/prevention & control , Horse Diseases/prevention & control , Vaccination , Viral Vaccines/immunology , Aerosols , Animals , Antibodies, Neutralizing/blood , Chlorocebus aethiops , Disease Models, Animal , Encephalomyelitis, Venezuelan Equine/immunology , Female , Horse Diseases/immunology , Horses , Humans , Internal Ribosome Entry Sites/immunology , Macaca fascicularis , Male , Protective Agents , Random Allocation , Vaccines, Attenuated/immunology , Vero Cells , Viremia
SELECTION OF CITATIONS
SEARCH DETAIL