Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731935

ABSTRACT

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Subject(s)
Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Leukemia , Lymphoma , Mitochondria , X-Linked Inhibitor of Apoptosis Protein , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Drug Resistance, Multiple/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Cytostatic Agents/pharmacology , Antineoplastic Agents/pharmacology
2.
J Am Chem Soc ; 146(11): 7456-7466, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38447178

ABSTRACT

Ti-based molecules and materials are ubiquitous and play a major role in both homogeneous and heterogeneous catalytic processes. Understanding the electronic structures of their active sites (oxidation state, local symmetry, and ligand environment) is key to developing molecular-level structure-property relationships. In that context, X-ray absorption spectroscopy (XAS) offers a unique combination of elemental selectivity and sensitivity to local symmetry. Commonly, for early transition metals such as Ti, K-edge XAS is applied for in situ characterization and subsequent structural analysis with high sensitivity toward tetrahedral species. Ti L2,3-edge spectroscopy is in principle complementary and offers specific opportunities to interrogate the electronic structure of five-and six-coordinated species. It is, however, much more rarely implemented because the use of soft X-rays implies ultrahigh vacuum conditions. Furthermore, the interpretation of the data can be challenging. Here, we show how Ti L2,3-edge spectroscopy can help to obtain unique information about both homogeneous and heterogeneous epoxidation catalysts and develop a molecular-level relationship between spectroscopic signatures and electronic structures. Toward this goal, we first establish a spectral library of molecular Ti reference compounds, comprising various coordination environments with mono- and dimeric Ti species having O, N, and Cl ligands. We next implemented a computational methodology based on multiplet ligand field theory and maximally localized Wannier orbitals benchmarked on our library to understand Ti L2,3-edge spectroscopic signatures. We finally used this approach to track and predict the spectra of catalytically relevant intermediates, focusing on Ti-based olefin epoxidation catalysts.

3.
Phytochem Anal ; 35(3): 579-585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38130156

ABSTRACT

INTRODUCTION: The active compound (E)-1-(3',4'-dimethoxyphenyl)butadiene (DMPBD) isolated from the rhizomes of Zingiber cassumunar Roxb. has potent anti-inflammatory and anticancer activities. Although DMPBD is one of the promising drug candidates for phytomedicine, its limited stability impedes its widespread use. For the development of new drugs, the assessment of their chemical stability is essential, ensuring they maintain their properties within specified limits throughout the period from production until use. OBJECTIVE: In the present study, we aimed to evaluate the stability of DMPBD under various conditions, including different solvents, temperatures, and lighting conditions, to identify the factors affecting stability and optimize the storage and handling conditions. METHODOLOGY: DMPBD samples subjected to the different conditions tested were monitored by quantitative 1H NMR (qHNMR), using an internal standard for the determination of the absolute quantity of DMPBD as a function of time and the changes thereof within 1 month. RESULTS: Significant decomposition of DMPBD was observed in chloroform-d1, whereas its content remained constant in methanol-d4. The content of DMPBD was maintained upon storage at temperatures below 4°C, both as methanolic solution and in the crude extract. Exposure to light had a slight negative impact on its contents. Some degradation products could be identified as resulting from O2-induced cleavage of the diene moiety. CONCLUSIONS: For pharmacological/therapeutic applications, DMPBD should be stored in the form of the crude extract or as a purified material in methanolic solution. Ideally, the storage temperature should be below 4°C and O2 should be excluded.


Subject(s)
Plant Extracts , Zingiberaceae , Plant Extracts/chemistry , Butadienes/analysis , Butadienes/pharmacology , Rhizome/chemistry , Zingiberaceae/chemistry
4.
Angew Chem Int Ed Engl ; 62(35): e202306584, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37366111

ABSTRACT

The titanium complex of the cis-1,2-diaminocyclohexane (cis-DACH) derived Berkessel-salalen ligand is a highly efficient and enantioselective catalyst for the asymmetric epoxidation of terminal olefins with hydrogen peroxide ("Berkessel-Katsuki catalyst"). We herein report that this epoxidation catalyst also effects the highly enantioselective hydroxylation of benzylic C-H bonds with hydrogen peroxide. Mechanism-based ligand optimization identified a novel nitro-salalen Ti-catalyst of the highest efficiency ever reported for asymmetric catalytic benzylic hydroxylation, with enantioselectivities of up to 98 % ee, while overoxidation to ketone is marginal. The novel nitro-salalen Ti-catalyst also shows enhanced epoxidation efficiency, as evidenced by e.g. the conversion of 1-decene to its epoxide in 90 % yield with 94 % ee, at a catalyst loading of 0.1 mol-% only.

5.
J Am Chem Soc ; 145(22): 12124-12135, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37235775

ABSTRACT

Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.

6.
Biomed Pharmacother ; 161: 114507, 2023 May.
Article in English | MEDLINE | ID: mdl-36958194

ABSTRACT

Gold complexes could be promising for tumor therapy because of their cytotoxic and cytostatic properties. We present novel gold(I) complexes and clarify whether they also show antitumor activity by studying apoptosis induction in different tumor cell lines in vitro, comparing the compounds on resistant cells and analyzing the mechanism of action. We particularly highlight one gold complex that shows cytostatic and cytotoxic effects on leukemia and lymphoma cells already in the nanomolar range, induces apoptosis via the intrinsic signaling pathway, and plays a role in the production of reactive oxygen species. Furthermore, not only did we demonstrate a large number of resistance overcomes on resistant cell lines, but some of these cell lines were significantly more sensitive to the new gold compound. Our results show promising properties for the gold compound as anti-tumor drug and suggest that it can subvert resistance mechanisms and thus targets resistant cells for killing.


Subject(s)
Antineoplastic Agents , Cytostatic Agents , Leukemia , Lymphoma , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cytostatic Agents/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Gold/pharmacology , Leukemia/pathology , Lymphoma/drug therapy , Reactive Oxygen Species/metabolism , Up-Regulation , Apoptosis Regulatory Proteins/metabolism
7.
Angew Chem Int Ed Engl ; 61(23): e202117682, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35238462

ABSTRACT

Under aprotic conditions, the stoichiometric reaction of N-heterocyclic carbenes (NHCs) such as imidazolidin-2-ylidenes with aldehydes affords Breslow Intermediates (BIs), involving a formal 1,2-C-to-O proton shift. We herein report kinetic studies (NMR), complemented by DFT calculations, on the mechanism of this kinetically disfavored H-translocation. Variable time normalization analysis (VTNA) revealed that the kinetic orders of the reactants vary for different NHC-to-aldehyde ratios, indicating different and ratio-dependent mechanistic regimes. We propose that for high NHC-to-aldehyde ratios, the H-shift takes place in the primary, zwitterionic NHC-aldehyde adduct. With excess aldehyde, the zwitterion is in equilibrium with a hemiacetal, in which the H-shift occurs. In both regimes, the critical H-shift is auto-catalyzed by the BI. Kinetic isotope effects observed for R-CDO are in line with our proposal. Furthermore, we detected an H-bonded complex of the BI with excess NHC (NMR).

8.
Angew Chem Int Ed Engl ; 61(26): e202201790, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35349213

ABSTRACT

In the Sharpless asymmetric epoxidation of chiral secondary allylic alcohols, one substrate enantiomer is predominantly converted to the anti-epoxy alcohol. We herein report the first highly syn-selective epoxidation of terminal allylic alcohols using a titanium salalen complex as catalyst, at room temperature, and aqueous hydrogen peroxide as oxidant. With enantiopure terminal allylic alcohols as substrates, the epoxy alcohols were obtained with up to 98 % yield and up to >99 : 1 dr (syn). Catalyst loadings as low as 1 mol % can be applied without eroding the syn-diastereoselectivity. Modification of the allylic alcohol to an ether does not affect the diastereoselectivity either [>99 : 1 dr (syn)]. Inverting the catalyst configuration leads to the anti-product, albeit at lower dr (ca. 20 : 1). The synthetic potential is demonstrated by a short, gram-scale preparation of a tetrahydrofuran building block with three stereocenters, involving two titanium salalen catalyzed epoxidation steps.

9.
Anal Chem ; 93(46): 15340-15348, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34756024

ABSTRACT

Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics strategies are being increasingly applied in metabolite screening for a wide variety of medical conditions. The long-standing "grand challenge" in the utilization of this approach is metabolite identification─confidently determining the chemical structures of m/z-detected unknowns. Here, we use a novel workflow based on the detection of molecular features of interest by high-throughput untargeted LC-MS analysis of patient body fluids combined with targeted molecular identification of those features using infrared ion spectroscopy (IRIS), effectively providing diagnostic IR fingerprints for mass-isolated targets. A significant advantage of this approach is that in silico-predicted IR spectra of candidate chemical structures can be used to suggest the molecular structure of unknown features, thus mitigating the need for the synthesis of a broad range of physical reference standards. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine metabolism, resulting from a mutation in the ALDH7A1 gene that leads to an accumulation of toxic levels of α-aminoadipic semialdehyde (α-AASA), piperideine-6-carboxylate (P6C), and pipecolic acid in body fluids. While α-AASA and P6C are known biomarkers for PDE in urine, their instability makes them poor candidates for diagnostic analysis from blood, which would be required for application in newborn screening protocols. Here, we use combined untargeted metabolomics-IRIS to identify several new biomarkers for PDE-ALDH7A1 that can be used for diagnostic analysis in urine, plasma, and cerebrospinal fluids and that are compatible with analysis in dried blood spots for newborn screening. The identification of these novel metabolites has directly provided novel insights into the pathophysiology of PDE-ALDH7A1.


Subject(s)
Epilepsy , Aldehyde Dehydrogenase , Biomarkers , Chromatography, Liquid , Epilepsy/diagnosis , Humans , Infant, Newborn , Metabolomics
10.
J Cancer Res Clin Oncol ; 147(9): 2591-2607, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34213662

ABSTRACT

PURPOSE: Since the discovery of the well-known cis-platin, transition metal complexes are highly recognized as cytostatic agents. However, toxic side effects of the metal ions present in the complexes may pose significant problems for their future development. Therefore, we investigated the metal-free salalen ligand WQF 044. METHODS: DNA fragmentations in leukemia (Nalm6) and solid tumor cells (BJAB, MelHO, MCF-7, RM82) proved the apoptotic effects of WQF 044, its overcoming of resistances and the cellular pathways that are affected by the substance. The apoptotic mechanisms finding were supported by western blot analysis, measurement of the mitochondrial membrane potential and polymerase chain reactions. RESULTS: A complex intervention in the mitochondrial pathway of apoptosis with a Bcl-2 and caspase dependence was observed. Additionally, a wide range of tumors were affected by the ligand in a low micromolar range in-vitro. The compound overcame multidrug resistances in P-gp over-expressed acute lymphoblastic leukemia and CD95-downregulated Ewing's sarcoma cells. Quite remarkable synergistic effects with vincristine were observed in Burkitt-like lymphoma cells. CONCLUSION: The investigation of a metal-free salalen ligand as a potential anti-cancer drug revealed in promising results for a future clinical use.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Leukemia/drug therapy , Mitochondria/drug effects , Neoplasms/drug therapy , Apoptosis , Cell Proliferation , Cisplatin/pharmacology , Humans , Leukemia/metabolism , Leukemia/pathology , Ligands , Mitochondria/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Tumor Cells, Cultured
11.
Angew Chem Int Ed Engl ; 60(36): 19631-19636, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34010504

ABSTRACT

We report the discovery that simple carboxylic acids, such as benzoic acid, boost the activity of N-heterocyclic carbene (NHC) catalysts in the oxidative esterification of aldehydes. A simple and efficient protocol for the transformation of a wide range of sterically hindered α- and ß-substituted aliphatic aldehydes/enals, catalyzed by a novel and readily accessible N-Mes-/N-2,4,6-trichlorophenyl 1,2,4-triazolium salt, and benzoic acid as co-catalyst, was developed. A whole series of α/ß-substituted aliphatic aldehydes/enals hitherto not amenable to NHC-catalyzed esterification could be reacted at typical catalyst loadings of 0.02-1.0 mol %. For benzaldehyde, even 0.005 mol % of NHC catalyst proved sufficient: the lowest value ever achieved in NHC catalysis. Preliminary studies point to carboxylic acid-induced acceleration of acyl transfer from azolium enolate intermediates as the mechanistic basis of the observed effect.

12.
Adv Synth Catal ; 363(7): 1955-1962, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33897314

ABSTRACT

We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CF3S- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.

13.
Biometals ; 34(2): 211-220, 2021 04.
Article in English | MEDLINE | ID: mdl-33560473

ABSTRACT

We investigated the aluminium-salen complex MBR-8 as a potential anti-cancer agent. To see apoptotic effects induced by MBR-8, alone and in combination with common cytostatic drugs, DNA-fragmentations were studied using the flow cytometric analysis. Western blot analysis and measurement of the mitochondrial membrane potential with a JC-1 dye were employed to identify the pathway of apoptosis. An impressive overcoming of multidrug-resistance in leukemia (Nalm6) cells was observed. Additionally, solid tumor cells including Burkitt-like lymphoma (BJAB) and mamma carcinoma cells (MCF-7) are affected by MBR-8 in the same way. Western blot analysis revealed activation of caspase-3. MBR-8 showed very pronounced selectivity with regard to tumor cells and high synergistic effects in Nalm6 and daunorubicin-resistant Nalm6 cells when administered in combination with vincristine, daunorubicin and doxorubicin. The aluminium-salen complex MBR-8 showed very promising anti-cancer properties which warrant further development towards a cytostatic agent for future chemotherapy. Studies on aluminium compounds for cancer therapy are rare, and our report adds to this important body of knowledge.


Subject(s)
Aluminum/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/pharmacology , Cytostatic Agents/pharmacology , Ethylenediamines/pharmacology , Aluminum/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Cytostatic Agents/chemical synthesis , Cytostatic Agents/chemistry , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Ethylenediamines/chemistry , Humans
14.
Sci Rep ; 11(1): 2391, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504837

ABSTRACT

Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.


Subject(s)
Cell Differentiation/drug effects , Diamines/pharmacology , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Cell Survival/drug effects , Diamines/chemistry , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Myocytes, Cardiac/cytology , Oxygen Consumption/drug effects , Teratoma/drug therapy , Teratoma/etiology , Teratoma/pathology
15.
Chemistry ; 27(8): 2662-2669, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-32893891

ABSTRACT

Breslow intermediates (BIs) are the crucial nucleophilic amino enol intermediates formed from electrophilic aldehydes in the course of N-heterocyclic carbene (NHC)-catalyzed umpolung reactions. Both in organocatalytic and enzymatic umpolung, the question whether the Breslow intermediate exists as the nucleophilic enol or in the form of its electrophilic keto tautomer is of utmost importance for its reactivity and function. Herein, the preparation of charge-tagged Breslow intermediates/keto tautomers derived from three different types of NHCs (imidazolidin-2-ylidenes, 1,2,4-triazolin-5-ylidenes, thiazolin-2-ylidenes) and aldehydes is reported. An ammonium charge tag is introduced through the aldehyde unit or the NHC. ESI-MS IR ion spectroscopy allowed the unambiguous conclusion that in the gas phase, the imidazolidin-2-ylidene-derived BI indeed exists as a diamino enol, while both 1,2,4-triazolin-5-ylidenes and thiazolin-2-ylidenes give the keto tautomer. This result coincides with the tautomeric states observed for the BIs in solution (NMR) and in the crystalline state (XRD), and is in line with our earlier calculations on the energetics of BI keto-enol equilibria.

16.
Angew Chem Int Ed Engl ; 60(9): 4507-4511, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33140529

ABSTRACT

Azolium enolates and acyl azolium cations have been proposed as intermediates in numerous N-heterocyclic carbene (NHC) catalyzed transformations. Acetyl azolium enolates were generated from the reaction of 2-propenyl acetate with both saturated (SIPr) and aromatic (IPr) NHCs, isolated, and characterized (NMR, XRD). Protonation with triflic acid gave the corresponding acetyl azolium triflates which were isolated and characterized (NMR, XRD). Acyl azolium cations have been proposed as immediate precursors of the ester product, for example, in the redox esterification of α,ß-enals. Studies with d3 -acetyl azolium triflate suggest that ester formation originates instead from an azolium enolate intermediate. Furthermore, the acetyl azolium enolate selectively reacted with alcohol nucleophiles in the presence of amines. While the acetyl azolium cation did not react with alcohols, an ester-selective reaction was induced by addition of base, by intermediate formation of the acetyl azolium enolate.

17.
Nature ; 586(7831): 708-713, 2020 10.
Article in English | MEDLINE | ID: mdl-33116285

ABSTRACT

Titanium silicalite-1 (TS-1) is a zeolitic material with MFI framework structure, in which 1 to 2 per cent of the silicon atoms are substituted for titanium atoms. It is widely used in industry owing to its ability to catalytically epoxidize olefins with hydrogen peroxide (H2O2), leaving only water as a byproduct1,2; around one million tonnes of propylene oxide are produced each year using this process3. The catalytic properties of TS-1 are generally attributed to the presence of isolated Ti(IV) sites within the zeolite framework1. However, despite almost 40 years of experimental and computational investigation4-10, the structure of these active Ti(IV) sites is unconfirmed, owing to the challenges of fully characterizing TS-1. Here, using a combination of spectroscopy and microscopy, we characterize in detail a series of highly active and selective TS-1 propylene epoxidation catalysts with well dispersed titanium atoms. We find that, on contact with H217O2, all samples exhibit a characteristic solid-state 17O nuclear magnetic resonance signature that is indicative of the formation of bridging peroxo species on dinuclear titanium sites. Further, density functional theory calculations indicate that cooperativity between two titanium atoms enables propylene epoxidation via a low-energy reaction pathway with a key oxygen-transfer transition state similar to that of olefin epoxidation by peracids. We therefore propose that dinuclear titanium sites, rather than isolated titanium atoms in the framework, explain the high efficiency of TS-1 in propylene epoxidation with H2O2. This revised view of the active-site structure may enable further optimization of TS-1 and the industrial epoxidation process.

18.
Bioorg Chem ; 104: 104193, 2020 11.
Article in English | MEDLINE | ID: mdl-32947134

ABSTRACT

A very small number of cobalt complexes is examined in oncology research. In this work, we investigate the cobalt (III) salen complex MBR-60 that turns out to be a promising anticancer drug. It induces apoptosis in Nalm6 leukemia and BJAB lymphoma cells and overcomes multidrug resistances by blocking the drug efflux pump P-glycoprotein. It further develops the apoptotic effects over the intrinsic pathway. An activation of caspase-3, caspase-8 and caspase-9 can be detected by western blot analysis. The independence of CD95 is shown by similar apoptotic inductions in BJAB and BJAB FADDdn cells. MBR-60 displays synergistic effects with daunorubicin and vincristine and has a selectivity to tumor cells. In comparison to the apoptotic effects of MBR-60 in BJAB lymphoma cells, the cobalt-free ligand 5 does not influence these cells. The research highlights that a cobalt complex has a therapeutic potential for cancer treating with a focus on drug-resistant tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cobalt/pharmacology , Coordination Complexes/pharmacology , Drug Discovery , Ethylenediamines/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cobalt/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Ethylenediamines/chemistry , Humans , Mitochondrial Transmembrane Permeability-Driven Necrosis/drug effects , Molecular Structure , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
19.
Biomedicines ; 8(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748808

ABSTRACT

The rapid development of parasite drug resistance as well as the lack of medications targeting both the asexual and the sexual blood stages of the malaria parasite necessitate the search for novel antimalarial compounds. Eleven organoarsenic compounds were synthesized and tested for their effect on the asexual blood stages and sexual transmission stages of the malaria parasite Plasmodium falciparum using in vitro assays. The inhibitory potential of the compounds on blood stage viability was tested on the chloroquine (CQ)-sensitive 3D7 and the CQ-resistant Dd2 strain using the Malstat assay. The most effective compounds were subsequently investigated for their effect on impairing gametocyte development and gametogenesis, using the gametocyte-producing NF54 strain in respective cell-based assays. Their potential toxicity was investigated on leukemia cell line Nalm-6 and non-infected erythrocytes. Five out of the 11 compounds showed antiplasmodial activities against 3D7, with half-maximal inhibitory concentration (IC50) values ranging between 1.52 and 8.64 µM. Three of the compounds also acted against Dd2, with the most active compound As-8 exhibiting an IC50 of 0.35 µM. The five compounds also showed significant inhibitory effects on the parasite sexual stages at both IC50 and IC90 concentrations with As-8 displaying the best gametocytocidal activity. No hemolytic and cytotoxic effect was observed for any of the compounds. The organoarsenic compound As-8 may represent a good lead for the design of novel organoarsenic drugs with combined antimalarial and transmission blocking activities.

20.
Org Lett ; 22(2): 386-390, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31904243

ABSTRACT

An efficient oxidative NHC-catalyzed one-step transformation of (S)- or (R)-8-oxocitronellal to nepetalactone (NL) in enantio- and diastereomerically pure form has been developed. Several new and "easy to make" N-Mes- or N-Dipp-substituted 1,2,4-triazolium salts carrying nitroaromatic groups on N1 were synthesized and evaluated as precatalysts in combination with base and stoichiometric organic oxidant. Under optimized conditions, NLs are accessible in very good yields and diastereomerically pure under mild conditions. The oxidant used could be recovered and recycled under operationally simple conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...