Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(5): e26996, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495176

ABSTRACT

Background: Heterologous expression of active, native-folded protein in Escherichia coli is critical in both academic research and biotechnology settings. When expressing non-native recombinant proteins in E. coli, obtaining soluble and active protein can be challenging. Numerous techniques can be used to enhance a proteins solubility, and largely focus on either altering the expression strain, plasmid vector features, growth conditions, or the protein coding sequence itself. However, there is no one-size-fits-all approach for addressing issues with protein solubility, and it can be both time and labor intensive to find a solution. An alternative approach is to use the co-expression of chaperones to assist with increasing protein solubility. By designing a genetic system where protein solubility is linked to viability, the appropriate protein folding factor can be selected for any given protein of interest. To this end, we developed a Split Antibiotic Selection (SAS) whereby an insoluble protein is inserted in-frame within the coding sequence of the hygromycin B resistance protein, aminoglycoside 7″-phosphotransferase-Ia (APH(7″)), to generate a tripartite fusion. By creating this tripartite fusion with APH(7″), the solubility of the inserted protein can be assessed by measuring the level of hygromycin B resistance of the cells. Results: We demonstrate the functionality of this system using a known protein and co-chaperone pair, the human mitochondrial Hsp70 ATPase domain (ATPase70) and its co-chaperone human escort protein (Hep). Insertion of the insoluble ATPase70 within APH(7'') renders the tripartite fusion insoluble and results in sensitivity to hygromycin B. Antibiotic resistance can be rescued by expression of the co-chaperone Hep which assists in the folding of the APH(7'')-ATPase70-APH(7'') tripartite fusion and find that cellular hygromycin B resistance correlates with the total soluble fusion protein. Finally, using a diverse chaperone library, we find that SAS can be used in a pooled genetic selection to identify chaperones capable of improving client protein solubility. Conclusions: The tripartite APH(7'') fusion links the in vivo solubility of the inserted protein of interest to hygromycin B resistance. This construct can be used in conjunction with a chaperone library to select for chaperones that increase the solubility of the inserted protein. This selection system can be applied to a variety of client proteins and eliminates the need to individually test chaperone-protein pairs to identify those that increase solubility.

3.
Nat Commun ; 14(1): 3514, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316535

ABSTRACT

Here we describe a facile and robust genetic selection for isolating full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of redox-engineered Escherichia coli cells. The method is based on the transport of a bifunctional substrate comprised of an antigen fused to chloramphenicol acetyltransferase, which allows positive selection of bacterial cells co-expressing cytoplasmic IgGs called cyclonals that specifically capture the chimeric antigen and sequester the antibiotic resistance marker in the cytoplasm. The utility of this approach is first demonstrated by isolating affinity-matured cyclonal variants that specifically bind their cognate antigen, the leucine zipper domain of a yeast transcriptional activator, with subnanomolar affinities, which represent a ~20-fold improvement over the parental IgG. We then use the genetic assay to discover antigen-specific cyclonals from a naïve human antibody repertoire, leading to the identification of lead IgG candidates with affinity and specificity for an influenza hemagglutinin-derived peptide antigen.


Subject(s)
Biological Assay , Immunoglobulin G , Humans , Immunoglobulin G/genetics , Cytoplasm , Cytosol , Escherichia coli/genetics , Saccharomyces cerevisiae
4.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37028930

ABSTRACT

Living art made with bacteria is gaining global attention, spreading from laboratories into the public domain: from school STEAM (Science, Technology, Engineering, the Arts, and Mathematics) events to art galleries, museums, community labs, and ultimately to the studios of microbial artists. Bacterial art is a synthesis of science and art that can lead to developments in both fields. Through the 'universal language of art', many social and preconceived ideas-including abstract scientific concepts-can be challenged and brought to the public attention in a unique way. By using bacteria to create publicly accessible art pieces, the barriers between humans and microbes can be lessened, and the artificial separation of the fields of science and art may be brought one step closer. Here, we document the history, impact, and current moment in the field of microbiologically inspired art for the benefit of educators, students, and the interested public. We provide a comprehensive historical background and examples of ancient bacterial art from cave paintings to uses in modern synthetic biology, a simple protocol for conducting bacterial art in a safe and responsible manner, a discussion of the artificial separation of science and art, and the future implications of art made from living microbes.


Subject(s)
Paintings , Humans , Engineering , Technology , Synthetic Biology , Students
6.
Appl Microbiol Biotechnol ; 107(5-6): 1959-1970, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36729226

ABSTRACT

Efficient selection and production of antibody fragments in microbial systems remain to be a challenging process. To optimize microbial production of single-chain variable fragments (scFvs), we have chosen five model targets, 1) a hapten, Zearalenone (ZEN) mycotoxin, along with infectious agents 2) rabies virus, 3) Propionibacterium acnes, 4) Pseudomonas aeruginosa, and a cancer cell 5) acute myeloid leukemia cell line (HL-60). The scFv binders were affinity selected from a non-immunized human phage display scFv antibody library and genetically fused to the N-terminus of emerald green fluorescent protein (EmGFP). The scFv-EmGFP fusion constructs were subcloned into an expression vector, under the control of T7 promoter, C-terminally tagged with hexa-histidine and expressed in different Escherichia coli (E. coli) hosts. This enabled the detection of cells that expressed the correct scFv-EmGFP fusion, termed fluorobody, via bright fluorescent signal in the cytoplasm. Among the three E. coli hosts tested, an engineered E. coli B strain called SHuffle B that promotes disulfide bond formation in the cytoplasm appeared to be the most appropriate host. The recombinant fluorobodies were well expressed (2-8 mg/L), possessed the fluorescence property of EmGFP, and retained the ability to bind to their cognate targets. Their specific bindings were demonstrated by ELISA, fluorescence-linked immunosorbent assay (FLISA), flow cytometry, and fluorescent microscope imaging. The fluorobody expression platform in this study could be further adopted as a one-step immunostaining technique based on scFv, isolated from phage display library to numerous desired targets. KEY POINTS: • E. coli SHuffle express T7 is a suitable expression host for scFv-EmGFP (fluorobody) • Only the clones harboring scFv-EmGFP plasmid will show bright fluorescent signal • This platform can be used to produce fluorobodies for numerous purposes.


Subject(s)
Escherichia coli , Single-Chain Antibodies , Humans , Escherichia coli/genetics , Enzyme-Linked Immunosorbent Assay , Cell Surface Display Techniques , Promoter Regions, Genetic , Green Fluorescent Proteins/metabolism
7.
Methods Enzymol ; 659: 105-144, 2021.
Article in English | MEDLINE | ID: mdl-34752282

ABSTRACT

Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , CHO Cells , Cricetinae , Cricetulus , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Protein Folding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
8.
Protein Sci ; 30(6): 1235-1246, 2021 06.
Article in English | MEDLINE | ID: mdl-33896065

ABSTRACT

Maltose binding protein (MBP) is used in recombinant protein expression as an affinity and solubility tag. The monoclonal antibody B48 binds MBP tightly and has no cross-reactivity to other proteins in an Escherichia coli lysate. This high level of specificity suggested that MBP contains an epitope that could prove useful as a purification and visualization tag for proteins expressed in E. coli. To discover the MBP epitope, a co-crystal structure was determined for MBP bound to its antibody and four amino acids of MBP were identified as critical for the binding interaction. Fusions of various fragments of MBP to the glutathione S-transferase protein were engineered in order to identify the smallest fragment still recognized by the α-MBP antibody. Stabilization of the epitope via mutational engineering resulted in a minimized 14 amino-acid tag.


Subject(s)
Epitopes/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Maltose-Binding Proteins/chemistry , Crystallography, X-Ray , Epitopes/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Maltose-Binding Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
9.
J Biol Chem ; 296: 100247, 2021.
Article in English | MEDLINE | ID: mdl-33361108

ABSTRACT

Environmental sequence data of microbial communities now makes up the majority of public genomic information. The assignment of a function to sequences from these metagenomic sources is challenging because organisms associated with the data are often uncharacterized and not cultivable. To overcome these challenges, we created a rationally designed expression library of metagenomic proteins covering the sequence space of the thioredoxin superfamily. This library of 100 individual proteins represents more than 22,000 thioredoxins found in the Global Ocean Sampling data set. We screened this library for the functional rescue of Escherichia coli mutants lacking the thioredoxin-type reductase (ΔtrxA), isomerase (ΔdsbC), or oxidase (ΔdsbA). We were able to assign functions to more than a quarter of our representative proteins. The in vivo function of a given representative could not be predicted by phylogenetic relation but did correlate with the predicted isoelectric surface potential of the protein. Selected proteins were then purified, and we determined their activity using a standard insulin reduction assay and measured their redox potential. An unexpected gel shift of protein E5 during the redox potential determination revealed a redox cycle distinct from that of typical thioredoxin-superfamily oxidoreductases. Instead of the intramolecular disulfide bond formation typical for thioredoxins, this protein forms an intermolecular disulfide between the attacking cysteines of two separate subunits during its catalytic cycle. Our functional metagenomic approach proved not only useful to assign in vivo functions to representatives of thousands of proteins but also uncovered a novel reaction mechanism in a seemingly well-known protein superfamily.


Subject(s)
Environmental Monitoring , Glutaredoxins/genetics , Metagenomics , Thioredoxins/genetics , Catalysis , Cysteine/chemistry , Escherichia coli/genetics , Glutaredoxins/chemistry , Glutaredoxins/classification , Multigene Family/genetics , Oceans and Seas , Oxidation-Reduction , Phylogeny , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxin-Disulfide Reductase/genetics , Thioredoxins/chemistry , Thioredoxins/classification
10.
Front Mol Biosci ; 8: 734154, 2021.
Article in English | MEDLINE | ID: mdl-34988112

ABSTRACT

Transposable elements (TE) are mobile genetic elements, present in all domains of life. They commonly encode a single transposase enzyme, that performs the excision and reintegration reactions, and these enzymes have been used in mutagenesis and creation of next-generation sequencing libraries. All transposases have some bias in the DNA sequence they bind to when reintegrating the TE DNA. We sought to identify a transposase that showed minimal sequence bias and could be produced recombinantly, using information from the literature and a novel bioinformatic analysis, resulting in the selection of the hATx-6 transposase from Hydra vulgaris (aka Hydra magnipapillata) for further study. This transposase was tested and shown to be active both in vitro and in vivo, and we were able to demonstrate very low sequence bias in its integration preference. This transposase could be an excellent candidate for use in biotechnology, such as the creation of next-generation sequencing libraries.

11.
Appl Microbiol Biotechnol ; 104(22): 9693-9706, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32997203

ABSTRACT

Microbial production of antibodies offers the promise of cheap, fast, and efficient production of antibodies at an industrial scale. Limiting this capacity in prokaryotes is the absence of the post-translational machinery, present in dedicated antibody producing eukaryotic cell lines, such as B cells. There has been few and limited success in producing full-length, correctly folded, and assembled IgG in the cytoplasm of prokaryotic cell lines. One such success was achieved by utilizing the genetically engineered Escherichia coli strain SHuffle with an oxidative cytoplasm. Due to the genetic disruption of reductive pathways, SHuffle cells are under constant oxidative stress, including increased levels of hydrogen peroxide (H2O2). The oxidizing capacity of H2O2 was linked to improved disulfide bond formation, by expressing a fusion of two endoplasmic reticulum-resident proteins, the thiol peroxidase GPx7 and the protein disulfide isomerase, PDI. In concert, these proteins mediate disulfide transfer from H2O2 to target proteins via PDI-Gpx7 fusions. The potential of this new strain was tested with Humira, a blockbuster antibody usually produced in eukaryotic cells. Expression results demonstrate that the new engineered SHuffle strain (SHuffle2) could produce Humira IgG four-fold better than the parental strain, both in shake-flask and in high-density fermentation. These preliminary studies guide the field in genetically engineering eukaryotic redox pathways in prokaryotes for the production of complex macromolecules. KEY POINTS: • A eukaryotic redox pathway was engineered into the E. coli strain SHuffle in order to improve the yield of the blockbuster antibody Humira. • The best peroxidase-PDI fusion was selected using bioinformatics and in vivo studies. • Improved yields of Humira were demonstrated at shake-flask and high-density fermenters.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Adalimumab , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Glutathione Peroxidase , Humans , Hydrogen Peroxide , Peroxidases , Protein Disulfide-Isomerases/genetics
12.
J Biol Chem ; 294(48): 18046-18056, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31604819

ABSTRACT

Monoclonal antibodies (mAbs) represent an important platform for the development of biotherapeutic products. Most mAbs are produced in mammalian cells, but several mAbs are made in Escherichia coli, including therapeutic fragments. The NISTmAb is a well-characterized reference material made widely available to facilitate the development of both originator biologics and biosimilars. Here, when expressing NISTmAb from codon-optimized constructs in E. coli (eNISTmAb), a truncated variant of its heavy chain was observed. N-terminal protein sequencing and mutagenesis analyses indicated that the truncation resulted from an internal translation initiation from a GTG codon (encoding Val) within eNISTmAb. Using computational and biochemical approaches, we demonstrate that this translation initiates from a weak Shine-Dalgarno sequence and is facilitated by a putative ribosomal protein S1-binding site. We also observed similar internal initiation in the mAb adalimumab (the amino acid sequence of the drug Humira) when expressed in E. coli Of note, these internal initiation regions were likely an unintended result of the codon optimization for E. coli expression, and the amino acid pattern from which it is derived was identified as a Pro-Ser-X-X-X-Val motif. We discuss the implications of our findings for E. coli protein expression and codon optimization and outline possible strategies for reducing the likelihood of internal translation initiation and truncated product formation.


Subject(s)
Adalimumab , Escherichia coli , Immunoglobulin Heavy Chains , Peptide Chain Initiation, Translational , Adalimumab/biosynthesis , Adalimumab/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
13.
Redox Biol ; 26: 101280, 2019 09.
Article in English | MEDLINE | ID: mdl-31450103

ABSTRACT

Understanding the in vivo redox biology of cells is a complex albeit important biological problem. Studying redox processes within living cells without physical disruption or chemical modifications is essential in determining the native redox states of cells. In this study, the previously characterized reduction-oxidation sensitive green fluorescent protein (roGFP2) was used to elucidate the redox changes of the genetically engineered Escherichia coli strain, SHuffle. SHuffle cells were demonstrated to be under constitutive oxidative stress and responding transcriptionally in an OxyR-dependent manner. Using roGFP2 fused to either glutathione (GSH)- or hydrogen peroxide (H2O2)- sensitive proteins (glutaredoxin 1 or Orp1), the cytosolic redox state of both wild type and SHuffle cells based on GSH/GSSG and H2O2 pools was measured. These probes open the path to in vivo studies of redox changes and genetic selections in prokaryotic hosts.


Subject(s)
Green Fluorescent Proteins/metabolism , Oxidation-Reduction , Prokaryotic Cells/metabolism , Recombinant Fusion Proteins/metabolism , Biosensing Techniques , Genetic Engineering , Green Fluorescent Proteins/genetics , Hydrogen Peroxide/metabolism , Molecular Imaging , Oxidative Stress , Recombinant Fusion Proteins/genetics
14.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296691

ABSTRACT

In this announcement, we present the complete annotated genome sequence of an Escherichia coli MC4100 mutant strain, BE104. This strain has several methionine sulfoxide reductase gene deletions, making it ideal for studying enzymes that alter the redox state of methionine.

15.
EcoSal Plus ; 8(2)2019 02.
Article in English | MEDLINE | ID: mdl-30761987

ABSTRACT

The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.


Subject(s)
Disulfides , Escherichia coli/metabolism , Periplasm/metabolism , Periplasmic Proteins/metabolism , Catalysis , Escherichia coli/cytology , Escherichia coli Proteins/metabolism , Oxidation-Reduction , Protein Disulfide-Isomerases , Protein Folding
16.
Protein Expr Purif ; 153: 7-17, 2019 01.
Article in English | MEDLINE | ID: mdl-30081196

ABSTRACT

A transmission-blocking vaccine targeting the sexual stages of Plasmodium species could play a key role in eradicating malaria. Multiple studies have identified the P. falciparum proteins Pfs25 and Pfs48/45 as prime targets for transmission-blocking vaccines. Although significant advances have been made in recombinant expression of these antigens, they remain difficult to produce at large scale and lack strong immunogenicity as subunit antigens. We linked a self-assembling protein, granule lattice protein 1 (Grl1p), from the ciliated protozoan, Tetrahymena thermophila, to regions of the ectodomains of either Pfs25 or Pfs48/45. We found that resulting protein chimera could be produced in E. coli as nanoparticles that could be readily purified in soluble form. When produced in the E. coli SHuffle strain, fusion to Grl1p dramatically increased solubility of target antigens while at the same time directing the formation of particles with diameters centering on 38 and 25 nm depending on the antigen. In a number of instances, co-expression with chaperone proteins and induction at a lower temperature further increased expression and solubility. Based on Western blotting and ELISA analysis, Pfs25 and Pfs48/45 retained their transmission-blocking epitopes within E. coli-derived particles, and the particles themselves elicited strong antibody responses in rabbits when given with an aluminum-based adjuvant. Antibodies against Pfs25-containing nanoparticles blocked parasite transmission in standard membrane-feeding assays. In conclusion, fusion to Grl1p can act as a solubility enhancer for proteins with limited solubility while retaining correct folding, which may be useful for applications such as the production of vaccines and other biologics.


Subject(s)
Antibodies, Protozoan/biosynthesis , Calcium-Binding Proteins/genetics , Malaria Vaccines/genetics , Malaria, Falciparum/prevention & control , Membrane Glycoproteins/genetics , Plasmodium falciparum/chemistry , Protozoan Proteins/genetics , Tetrahymena thermophila/chemistry , Animals , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Biological Assay , Calcium-Binding Proteins/administration & dosage , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/immunology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunogenicity, Vaccine , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/immunology , Mosquito Vectors/parasitology , Nanoparticles , Plasmodium falciparum/immunology , Protein Folding , Protozoan Proteins/administration & dosage , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Rabbits , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Tetrahymena thermophila/immunology
17.
MAbs ; 10(7): 992-1002, 2018 10.
Article in English | MEDLINE | ID: mdl-30060704

ABSTRACT

The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.


Subject(s)
Antibodies, Monoclonal/chemistry , Biological Therapy , Escherichia coli/genetics , Isotope Labeling/methods , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Carbon Isotopes/chemistry , Gene Expression , Glycosylation , Humans , Immunosorbent Techniques , Magnetic Resonance Spectroscopy , Mass Spectrometry
18.
J Bacteriol ; 200(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29084858

ABSTRACT

Capturing microbial growth on a macroscopic scale is of great importance to further our understanding of microbial life. However, methods for imaging microbial life on a scale of millimeters to centimeters are often limited by designs that have poor environmental control, resulting in dehydration of the agar plate within just a few days. Here, we created MOCHA (microbial chamber), a simple but effective chamber that allows users to study microbial growth for extended periods (weeks) in a stable environment. Agar hydration is maintained with a double-decker design, in which two glass petri dishes are connected by a wick, allowing the lower plate to keep the upper plate hydrated. This flexible chamber allows the observation of a variety of microbiological phenomena, such as the growth and development of single bacterial and fungal colonies, interspecies interactions, swarming motility, and pellicle formation.IMPORTANCE Detailed study of microbial life on the colony scale of millimeters to centimeters has been lagging considerably behind microscopic inspection of microbes. One major reason for this is the lack of inexpensive instrumentation that can reproducibly capture images in a controlled environment. In this study, we present the design and use of a unique chamber that was used to produce several time-lapse movies that aimed to capture the diversity of microbial colony phenotypes over long periods.


Subject(s)
Bacteria/cytology , Bacteria/growth & development , Time-Lapse Imaging , Agar , Bacillus/cytology , Bacillus/growth & development , Colony Count, Microbial , Culture Media , Phenotype , Time-Lapse Imaging/instrumentation , Time-Lapse Imaging/methods
19.
Microbiology (Reading) ; 163(12): 1864-1879, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29139344

ABSTRACT

Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.


Subject(s)
Aeropyrum/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Disulfides/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Aeropyrum/chemistry , Aeropyrum/genetics , Archaeal Proteins/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cysteine/chemistry , Cysteine/metabolism , Cytoplasm/chemistry , Cytoplasm/genetics , Cytoplasm/metabolism , Disulfides/metabolism , Membrane Proteins/genetics , Periplasm/genetics , Periplasm/metabolism , Protein Folding
20.
Nat Chem Biol ; 13(9): 1022-1028, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28628094

ABSTRACT

Escherichia coli DsbB is a transmembrane enzyme that catalyzes the reoxidation of the periplasmic oxidase DsbA by ubiquinone. Here, we sought to convert membrane-bound DsbB into a water-soluble biocatalyst by leveraging a previously described method for in vivo solubilization of integral membrane proteins (IMPs). When solubilized DsbB variants were coexpressed with an export-defective copy of DsbA in the cytoplasm of wild-type E. coli cells, artificial oxidation pathways were created that efficiently catalyzed de novo disulfide-bond formation in a range of substrate proteins, in a manner dependent on both DsbA and quinone. Hence, DsbB solubilization was achieved with preservation of both catalytic activity and substrate specificity. Moreover, given the generality of the solubilization technique, the results presented here should pave the way to unlocking the biocatalytic potential of other membrane-bound enzymes whose utility has been limited by poor stability of IMPs outside of their native lipid-bilayer context.


Subject(s)
Bacterial Proteins/chemistry , Disulfides/chemistry , Membrane Proteins/chemistry , Water/chemistry , Bacterial Proteins/genetics , Catalysis , Genetic Variation , Membrane Proteins/genetics , Models, Biological , Protein Engineering , Protein Folding , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...