Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biomed Online ; 29(5): 627-33, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25246117

ABSTRACT

BMP15 has drawn particular attention in the pathophysiology of reproduction, as its mutations in mammalian species have been related to different reproductive phenotypes. In humans, BMP15 coding regions have been sequenced in large panels of women with premature ovarian failure (POF), but only some mutations have been definitely validated as causing the phenotype. A functional association between the BMP15 c.-9C>G promoter polymorphism and cause of POF have been reported. The aim of this study was to determine the potential functional effect of this sequence variant on specific BMP15 promoter transactivation disturbances. Bioinformatics was used to identify transcription factor binding sites located on the promoter region of BMP15. Reverse transcription polymerase chain reaction was used to study specific gene expression in ovarian tissue. Luciferase reporter assays were used to establish transactivation disturbances caused by the BMP15 c.-9C>G variant. The c.-9C>G variant was found to modify the PITX1 transcription factor binding site. PITX1 and BMP15 co-expressed in human and mouse ovarian tissue, and PITX1 transactivated both BMP15 promoter versions (-9C and -9G). It was found that the BMP15 c.-9G allele was related to BMP15 increased transcription, supporting c.-9C>G as a causal agent of POF.


Subject(s)
Bone Morphogenetic Protein 15/genetics , Ovary/metabolism , Polymorphism, Single Nucleotide , Primary Ovarian Insufficiency/genetics , Promoter Regions, Genetic , Alleles , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Computational Biology , Female , Genetic Variation , Humans , Luciferases/metabolism , Mice , Mutation , Paired Box Transcription Factors/metabolism , Phenotype , Transcription, Genetic , Transcriptional Activation
2.
PLoS One ; 8(6): e64692, 2014.
Article in English | MEDLINE | ID: mdl-23755135

ABSTRACT

Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder characterized by extreme sensitivity to actinic pigmentation changes in the skin and increased incidence of skin cancer. In some cases, patients are affected by neurological alterations. XP is caused by mutations in 8 distinct genes (XPA through XPG and XPV). The XP-V (variant) subtype of the disease results from mutations in a gene (XPV, also named POLH) which encodes for Polη, a member of the Y-DNA polymerase family. Although the presence and severity of skin and neurological dysfunctions differ between XP subtypes, there are overlapping clinical features among subtypes such that the sub-type cannot be deduced from the clinical features. In this study, in order to overcome this drawback, we undertook whole-exome sequencing in two XP sibs and their father. We identified a novel homozygous nonsense mutation (c.897T>G, p.Y299X) in POLH which causes the disease. Our results demonstrate that next generation sequencing is a powerful approach to rapid determination of XP genetic etiology.


Subject(s)
Exome/genetics , High-Throughput Nucleotide Sequencing/methods , Xeroderma Pigmentosum/genetics , Adult , Female , Humans , Male , Pedigree , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL