Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 46(3): 409-430, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38416309

ABSTRACT

One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.


Subject(s)
Aspergillus nidulans , Carboxylic Ester Hydrolases , Aspergillus nidulans/genetics , Aspergillus nidulans/enzymology , Substrate Specificity , Hydrogen-Ion Concentration , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/chemistry , Temperature , Molecular Weight , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Enzyme Stability , Culture Media/chemistry
2.
Appl Microbiol Biotechnol ; 103(9): 3863-3874, 2019 May.
Article in English | MEDLINE | ID: mdl-30863878

ABSTRACT

Four cutinase genes are encoded in the genome of the saprophytic fungus Aspergillus nidulans, but only two of them have proven to codify for active cutinases. However, their overall roles in cutin degradation are unknown, and there is scarce information on the regulatory effectors of their expression. In this work, the expression of the cutinase genes was assayed by multiplex qRT-PCR in cultures grown in media containing both inducer and repressor carbon sources. The genes ancut1 and ancut2 were induced by cutin and its monomers, while ancut3 was constitutively expressed. Besides, cutin induced ancut4 only under oxidative stress conditions. An in silico analysis of the upstream regulatory sequences suggested binding regions for the lipid metabolism transcription factors (TF) FarA for ancut1 and ancut2 while FarB for ancut3. For ancut4, the analysis suggested binding to NapA (the stress response TF). These binding possibilities were experimentally tested by transcriptional analysis using the A. nidulans mutants ANΔfarA, ANΔfarB, and ANΔnapA. Regarding cutin degradation, spectroscopic and chromatographic methods showed similar products from ANCUT1 and ANCUT3. In addition, ANCUT1 produced 9,10-dihydroxy hexadecanoic acid, suggesting an endo-cleavage action of this enzyme. Regarding ANCUT2 and ANCUT4, they produced omega fatty acids. Our results confirmed the cutinolytic activity of the four cutinases, allowed identification of their specific roles in the cutinolytic system and highlighted their differences in the regulatory mechanisms and affinity towards natural substrates. This information is expected to impact the cutinase production processes and broaden their current biotechnological applications.


Subject(s)
Aspergillus nidulans/enzymology , Carboxylic Ester Hydrolases/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Membrane Lipids/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Carboxylic Ester Hydrolases/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Appl Biochem Biotechnol ; 182(3): 1014-1036, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28124733

ABSTRACT

Biochemical characterization of purified ANCUT2 cutinase from Aspergillus nidulans is described. The identified amino acid sequence differs from that predicted in Aspergillus genomic databases in amino acids not relevant for catalysis. The enzyme is thermo-alkaline, showing its maximum activity at pH 9 and 60 °C, and it retains more than 60% of its initial activity after incubation for 1 h at 60 °C for pH values between 6 and 10. ANCUT2 is more active towards long-chain esters and it hydrolyzes cutin; however, it also hydrolyzes short-chain esters. Cutinase is inhibited by metal ions, PMSF, SDS, and EDTA (10 mM). It retains 50% of its activity in most of the solvents tested, although it is more stable in hydrophobic solvents. According to its found biochemical properties, preliminary assays demonstrate its ability to synthesize methyl esters from sesame oil and the most likely application of this enzyme remains in detergent formulations.


Subject(s)
Aspergillus nidulans/enzymology , Carboxylic Ester Hydrolases/chemistry , Fungal Proteins/chemistry , Aspergillus nidulans/genetics , Carboxylic Ester Hydrolases/genetics , Enzyme Stability , Fungal Proteins/genetics , Hot Temperature , Hydrogen-Ion Concentration , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...