Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38534645

ABSTRACT

Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.

2.
Front Microbiol ; 14: 1320154, 2023.
Article in English | MEDLINE | ID: mdl-38156004

ABSTRACT

Salmonella genus is a leading cause of food-borne infections with strong public health impact and economic ramifications. The development of antimicrobial resistance added complexity to this scenario and turned the antibiotic drug discovery into a highly important challenge. The screening of peptides has served as a successful discovery platform to design new antibiotic candidates. Motivated by this, the antimicrobial and cytotoxic properties of three cruzioseptins against Salmonella Typhimurium and RAW 264.7 murine macrophage cells, respectively, were investigated. [K4K15]CZS-1 was the most potent antimicrobial peptide identified in the screening step with a minimum inhibitory concentration (MIC) of 16 µg/mL (7.26 µM) and moderate cytotoxicity. From a structural point of view, in vitro and in silico techniques evidenced that [K4K15]CZS-1 is a α-helical cationic antimicrobial peptide. In order to capture mechanistic details and fully decipher their antibacterial action, we adopted a multidimensional approach, including spectroscopy, electron microscopy and omics analysis. In general lines, [K4K15]CZS-1 caused membrane damage, intracellular alterations in Salmonella and modulated metabolic pathways, such as the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and lipid metabolism. Overall, these findings provide deeper insights into the antibacterial properties and multidimensional mode of action of [K4K15]CZS-1 against Salmonella Typhimurium. In summary, this study represents a first step toward the screening of membrane-acting and intracellular-targeting peptides as potential bio-preservatives to prevent foodborne outbreaks caused by Salmonella.

3.
Amino Acids ; 55(1): 113-124, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36609571

ABSTRACT

Peptide engineering has gained attraction as a source of new cationicity-enhanced analogues with high potential for the design of next-generation antibiotics. In this context, cruzioseptin-1 (CZS-1), a peptide identified from Cruziohyla calcarifer, is recognized for its antimicrobial potency. However, this amidated-peptide is moderately hemolytic. In order to reduce toxicity and increase antimicrobial potency, 3 peptide analogues based on cruzioseptin-1 were designed and evaluated. [K4K15]CZS-1, an analogue with increased cationicity and reduced hydrophobicity, showed antibacterial, antifungal and antiproliferative properties. In addition, [K4K15]CZS-1 is less hemolytic than CZS-1. The in silico and scanning electron microscopy analysis reveal that [K4K15]CZS-1 induces a membranolytic effect on bacteria. Overall, these results confirm the potential of CZS-1 as source of inspiration for design new selective antimicrobial analogues useful for development of new therapeutic agents.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...