Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875749

ABSTRACT

In recent years, the synthesis of polymer electrolyte systems derived from biopolymers for the development of sustainable green electrochemical devices has attracted great attention. Here electrolytes based on the red seaweeds-derived polysaccharide κ-carrageenan (κ-Cg) doped with neodymium triflate (NdTrif3) and glycerol (Gly) were obtained by means of a simple, clean, fast, and low-cost procedure. The aim was to produce near-infrared (NIR)-emitting materials with improved thermal and mechanical properties, and enhanced ionic conductivity. Cg has a particular interest, due to the fact that it is a renewable, cost-effective natural polymer and has the ability of gelling in the presence of certain alkali- and alkaline-earth metal cations, being good candidates as host matrices for accommodating guest cations. The as-synthesised κ-Cg-based membranes are semi-crystalline, reveal essentially a homogeneous texture, and exhibit ionic conductivity values 1⁻2 orders of magnitude higher than those of the κ-Cg matrix. A maximum ionic conductivity was achieved for 50 wt.% Gly/κ-Cg and 20 wt.% NdTrif3/κ-Cg (1.03 × 10-4, 3.03 × 10-4, and 1.69 × 10-4 S cm-1 at 30, 60, and 97 °C, respectively). The NdTrif-based κ-Cg membranes are multi-wavelength emitters from the ultraviolet (UV)/visible to the NIR regions, due to the κ-Cg intrinsic emission and to Nd3+, 4F3/2→4I11/2-9/2.


Subject(s)
Biopolymers/chemistry , Carrageenan/chemistry , Electrolytes/chemistry , Glycerol/chemistry , Biopolymers/radiation effects , Carrageenan/chemical synthesis , Electric Conductivity , Electrolytes/chemical synthesis , Gels/chemical synthesis , Gels/chemistry , Glycerol/chemical synthesis , Luminescence , Neodymium/chemistry , Ultraviolet Rays
2.
Opt Express ; 22(22): 27159-68, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25401866

ABSTRACT

An integrated variable wave plate device based on a thermo-optic (TO) effect was fabricated by patterning a waveguide channel through direct UV laser writing on the surface of sol-gel derived organic-inorganic hybrid (di-ureasil) films. The di-ureasil layer is stable up to 250 °C and has a high TO coefficient calculated as -(4.9 ± 0.5) × 10(-4) °C(-1) at 1550 nm. The waveguide temperature was tuned, inducing optical phase retardation between the transverse electric and transverse magnetic modes, resulting in a controllable wave plate. A maximum phase retardation of 77 ° was achieved for a waveguide induced temperature increase of 5 °C above room temperature, with a power consumption of 0.4 W. The thermal linear retardation coefficient was calculated to be 19 ± 1 °/ °C.

3.
J Nanosci Nanotechnol ; 14(9): 6685-91, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25924317

ABSTRACT

Luminescent materials containing europium ions are investigated for different optical applications. They can be obtained using bio-macromolecules, which are promising alternatives to synthetic polymers based on the decreasing oil resources. This paper describes studies of the DNA- and Agar-europium triflate luminescent membranes and its potential technological applications are expanded to electroluminescent devices. Polarized optical microscopy demonstrated that the samples are birefringent with submicrometer anisotropy. The X-ray diffraction analysis revealed predominantly amorphous nature of the samples and the atomic force microscopy images showed a roughness of the membranes of 409.0 and 136.1 nm for the samples of DNA10Eu and Agar1.11Eu, respectively. The electron paramagnetic resonance spectra of the DNA(n)Eu membranes with the principal lines at g ≈ 2.0 and g ≈ 4.8 confirmed uniform distribution of rare earth ions in a disordered matrix. Moreover, these strong and narrow resonance lines for the samples of DNA(n)Eu when compared to the Agar(n)Eu suggested a presence of paramagnetic radicals arising from the DNA matrix. The emission spectra suggested that the Eu3+ ions occupy a single local environment in both matrices and the excitation spectra monitored around the Eu emission lines pointed out that the Eu3+ ions in the Agar host were mainly excited via the broad band component rather than by direct intra-4f(6) excitation, whereas the opposite case occurred for the DNA-based sample.


Subject(s)
Agar/chemistry , DNA/chemistry , Europium/chemistry , Luminescent Agents/chemistry , Membranes, Artificial , Luminescent Measurements/instrumentation
4.
ACS Appl Mater Interfaces ; 3(8): 2953-65, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21774498

ABSTRACT

The sol-gel process has been successfully combined with the "mixed cation" effect to produce novel luminescent and ion conducting biohybrids composed of a diurethane cross-linked poly(ε-caprolactone) (PCL530)/siloxane hybrid network (PCL stands for the poly(ε-caprolactone) biopolymer and 530 is the average molecular weight in gmol(-1)) doped with a wide range of concentrations of lithium and europium triflates (LiCF(3)SO(3) and Eu(CF(3)SO(3))(3), respectively) (molar ratio of ca. 50:50). The hybrid samples are all semicrystalline: whereas at n = 52.6 and 27.0 (n, composition, corresponds to the number of (C(═O)(CH(2))(5)O) repeat units of PCL(530) per mixture of Li(+) and Eu(3+) ions) a minor proportion of crystalline PCL(530) chains is present, at n = 6.1, a new crystalline phase emerges. The latter electrolyte is thermally stable up to 220 °C and exhibits the highest conductivity over the entire range of temperatures studied (3.7 × 10(-7) and 1.71 × 10(-4) S cm(-1) at 20 and 102 °C, respectively). According to infrared spectroscopic data, major modifications occur in terms of hydrogen bonding interactions at this composition. The electrochemical stability domain of the biohybrid sample with n = 27 spans more than 7 V versus Li/Li(+). This sample is a room temperature white light emitter. Its emission color can be easily tuned across the Commission Internationale d'Éclairage (CIE) chromaticity diagram upon simply changing the excitation wavelength. Preliminary tests performed with a prototype electrochromic device (ECD) comprising the sample with n = 6.1 as electrolyte and WO(3) as cathodically coloring layer are extremely encouraging. The device exhibits switching time around 50 s, an optical density change of 0.15, good open circuit memory under atmospheric conditions (ca. 1 month) and high coloration efficiency (577 cm(2) C(-1) in the second cycle).


Subject(s)
Electrolytes/chemistry , Europium/chemistry , Lithium/chemistry , Polyesters/chemistry , Siloxanes/chemistry , Crystallization , Electrochemical Techniques/instrumentation , Gels/chemistry , Hydrogen Bonding , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...