Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 60, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272876

ABSTRACT

The serotonin (5-HT) system is heavily implicated in the regulation of anxiety and trauma-related disorders such as panic disorder and post-traumatic stress disorder, respectively. However, the neural mechanisms of how serotonergic neurotransmission regulates innate panic and fear brain networks are poorly understood. Our earlier studies have identified that orexin (OX)/glutamate neurons within the perifornical hypothalamic area (PFA) play a critical role in adaptive and pathological panic and fear. While site-specific and electrophysiological studies have shown that intracranial injection and bath application of 5-HT inhibits PFA neurons via 5-HT1a receptors, they largely ignore circuit-specific neurotransmission and its physiological properties that occur in vivo. Here, we investigate the role of raphe nuclei 5-HT inputs into the PFA in panic and fear behaviors. We initially confirmed that photostimulation of glutamatergic neurons in the PFA of rats produces robust cardioexcitation and flight/aversive behaviors resembling panic-like responses. Using the retrograde tracer cholera toxin B, we determined that the PFA receives discrete innervation of serotonergic neurons clustered in the lateral wings of the dorsal (lwDRN) and in the median (MRN) raphe nuclei. Selective lesions of these serotonergic projections with saporin toxin resulted in similar panic-like responses during the suffocation-related CO2 challenge and increased freezing to fear-conditioning paradigm. Conversely, selective stimulation of serotonergic fibers in the PFA attenuated both flight/escape behaviors and cardioexcitation responses elicited by the CO2 challenge and induced conditioned place preference. The data here support the hypothesis that PFA projecting 5-HT neurons in the lwDRN/MRN represents a panic/fear-off circuit and may also play a role in reward behavior.


Subject(s)
Carbon Dioxide , Serotonin , Rats , Animals , Serotonin/physiology , Rats, Wistar , Fear/physiology , Panic/physiology , Serotonergic Neurons
2.
J Psychopharmacol ; 34(4): 400-411, 2020 04.
Article in English | MEDLINE | ID: mdl-32153226

ABSTRACT

BACKGROUND: The central serotonergic system originating from the dorsal raphe nucleus (DR) plays a critical role in anxiety and trauma-related disorders such as posttraumatic stress disorder. Although many studies have investigated the role of serotonin (5-HT) within pro-fear brain regions such as the amygdala, the majority of these studies have utilized non-selective pharmacological approaches or poorly understood lesioning techniques which limit their interpretation. AIM: Here we investigated the role of amygdala-projecting 5-HT neurons in the DR in innate anxiety and conditioned fear behaviors. METHODS: To achieve this goal, we utilized (1) selective lesion of 5-HT neurons projecting to the amygdala with saporin toxin conjugated to anti-serotonin transporter (SERT) injected into the amygdala, and (2) optogenetic excitation of amygdala-projecting DR cell bodies with a combination of a retrogradely transported canine adenovirus-expressing Cre-recombinase injected into the amygdala and a Cre-dependent-channelrhodopsin injected into the DR. RESULTS: While saporin treatment lesioned both local amygdalar 5-HT fibers and neurons in the DR as well as reduced conditioned fear behavior, optical activation of amygdala-projecting DR neurons enhanced anxious behavior and conditioned fear response. CONCLUSION: Collectively, these studies support the hypothesis that amygdala-projecting 5-HT neurons in the DR represent an anxiety and fear-on network.


Subject(s)
Amygdala/physiology , Anxiety/psychology , Dorsal Raphe Nucleus/physiology , Fear/psychology , Gain of Function Mutation , Serotonergic Neurons , Animals , Conditioning, Classical , Male , Nerve Net/drug effects , Neural Pathways/drug effects , Optogenetics , Photic Stimulation , Rats , Rats, Wistar , Saporins/pharmacology , Social Interaction
3.
Front Neurosci ; 12: 934, 2018.
Article in English | MEDLINE | ID: mdl-30618563

ABSTRACT

Orexins (OX), also known as hypocretins, are excitatory neuropeptides with well-described roles in regulation of wakefulness, arousal, energy homeostasis, and anxiety. An additional and recently recognized role of OX is modulation of fear responses. We studied the OX neurons of the perifornical hypothalamus (PeF) which send projections to the amygdala, a region critical in fear learning and fear expression. Within the amygdala, the highest density of OX-positive fibers was detected in the central nucleus (CeA). The specific mechanisms underlying OX neurotransmission within the CeA were explored utilizing rat brain slice electrophysiology, pharmacology, and chemogenetic stimulation. We show that OX induces postsynaptic depolarization of medial CeA neurons that is mediated by OX receptor 1 (OXR1) but not OX receptor 2 (OXR2). We further characterized the mechanism of CeA depolarization by OX as phospholipase C (PLC)- and sodium-calcium exchanger (NCX)- dependent. Selective chemogenetic stimulation of OX PeF fibers recapitulated OXR1 dependent depolarization of CeA neurons. We also observed that OXR1 activity modified presynaptic release of glutamate within the CeA. Finally, either systemic or intra-CeA perfusion of OXR1 antagonist reduced the expression of conditioned fear. Together, these data suggest the PeF-CeA orexinergic pathway can modulate conditioned fear through a signal transduction mechanism involving PLC and NCX activity and that selective OXR1 antagonism may be a putative treatment for fear-related disorders.

4.
Steroids ; 120: 7-18, 2017 04.
Article in English | MEDLINE | ID: mdl-28192127

ABSTRACT

Nandrolone Decanoate (ND) is an Anabolic Androgenic Steroid (AAS) that under abusive regimen can lead to multiple physiological adverse effects. Studies of AAS-mediated cardiovascular (CV) alterations were mostly taken from male subjects, even though women are also susceptible to the effects of AAS and gender-specific differences in susceptibility to vascular diseases exist. Here we investigate ND-induced vascular reactivity alterations in both sedentary and exercised female rats and whether these alterations depend on endothelium-derived factors. We show that chronic exposure of female Wistar rats to ND (20mg/Kg/week for 4weeks) impaired the vascular mesenteric bed (MVB) reactivity to vasodilator (acetylcholine) agonist. The endothelium-dependent Nitric Oxide (NO) component was reduced in ND-treated rats, whereas neither the endothelium-derived hyperpolarizing factor (EDHF) component nor prostanoids were altered in the MVBs. Endothelial dysfunction observed in ND-treated rats was associated with decreased eNOS (Ser1177) and Akt (Ser473) phosphorylation sites and upregulation of iNOS and NADPH oxidase expression. Exercise training by weight lifting in water did not improve the vascular alterations induced by ND treatment. ND treatment also significantly reduced the serum levels of estradiol in females, overriding its CV protective effect. These results help uncover the role of ND modulating endothelial function in the setting of CV disease caused by the abuse of AAS in females. If this translates to humans, young women abusing AAS can potentially lose the cardio protective effect rendered by estrogen and be more susceptible to CV alterations.


Subject(s)
Anabolic Agents/pharmacology , Nandrolone/analogs & derivatives , Physical Conditioning, Animal/physiology , Adiposity/drug effects , Animals , Biological Factors/metabolism , Eating/drug effects , Female , Mesenteric Arteries/drug effects , Models, Biological , NADPH Oxidases/metabolism , Nandrolone/pharmacology , Nandrolone Decanoate , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Prostaglandins/metabolism , Rats , Rats, Wistar , Vasodilation/drug effects , Weight Gain/drug effects
5.
Animals (Basel) ; 6(8)2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27490573

ABSTRACT

Current recommendations for the use of CO 2 as a euthanasia agent for rats require the use of gradual fill protocols (such as 10% to 30% volume displacement per minute) in order to render the animal insensible prior to exposure to levels of CO 2 that are associated with pain. However, exposing rats to CO 2 , concentrations as low as 7% CO 2 are reported to cause distress and 10%-20% CO 2 induces panic-associated behavior and physiology, but loss of consciousness does not occur until CO 2 concentrations are at least 40%. This suggests that the use of the currently recommended low flow volume per minute displacement rates create a situation where rats are exposed to concentrations of CO 2 that induce anxiety, panic, and distress for prolonged periods of time. This study first characterized the response of male rats exposed to normoxic 20% CO 2 for a prolonged period of time as compared to room air controls. It demonstrated that rats exposed to this experimental condition displayed clinical signs consistent with significantly increased panic-associated behavior and physiology during CO 2 exposure. When atmospheric air was then again delivered, there was a robust increase in respiration rate that coincided with rats moving to the air intake. The rats exposed to CO 2 also displayed behaviors consistent with increased anxiety in the behavioral testing that followed the exposure. Next, this study assessed the behavioral and physiologic responses of rats that were euthanized with 100% CO 2 infused at 10%, 30%, or 100% volume per minute displacement rates. Analysis of the concentrations of CO 2 and oxygen in the euthanasia chamber and the behavioral responses of the rats suggest that the use of the very low flow volume per minute displacement rate (10%) may prolong the duration of panicogenic ranges of ambient CO 2 , while the use of the higher flow volume per minute displacement rate (100%) increases agitation. Therefore, of the volume displacement per minute rates evaluated, this study suggests that 30% minimizes the potential pain and distress experienced by the animal.

SELECTION OF CITATIONS
SEARCH DETAIL
...