Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0193258, 2018.
Article in English | MEDLINE | ID: mdl-29447292

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0185825.].

2.
PLoS One ; 12(10): e0185825, 2017.
Article in English | MEDLINE | ID: mdl-29023456

ABSTRACT

The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users) were instructed to text chat (with two different levels of cognitive load), call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use.


Subject(s)
Cognition/physiology , Gait/physiology , Mobile Applications , Smartphone , Walking/physiology , Adult , Female , Humans , Male , Text Messaging , Video Games
3.
Sensors (Basel) ; 15(9): 23095-109, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26378544

ABSTRACT

Inertial sensors are increasingly being used to recognize and classify physical activities in a variety of applications. For monitoring and fitness applications, it is crucial to develop methods able to segment each activity cycle, e.g., a gait cycle, so that the successive classification step may be more accurate. To increase detection accuracy, pre-processing is often used, with a concurrent increase in computational cost. In this paper, the effect of pre-processing operations on the detection and classification of locomotion activities was investigated, to check whether the presence of pre-processing significantly contributes to an increase in accuracy. The pre-processing stages evaluated in this study were inclination correction and de-noising. Level walking, step ascending, descending and running were monitored by using a shank-mounted inertial sensor. Raw and filtered segments, obtained from a modified version of a rule-based gait detection algorithm optimized for sequential processing, were processed to extract time and frequency-based features for physical activity classification through a support vector machine classifier. The proposed method accurately detected >99% gait cycles from raw data and produced >98% accuracy on these segmented gait cycles. Pre-processing did not substantially increase classification accuracy, thus highlighting the possibility of reducing the amount of pre-processing for real-time applications.


Subject(s)
Accelerometry/methods , Human Activities/classification , Monitoring, Ambulatory/methods , Signal Processing, Computer-Assisted , Adult , Algorithms , Gait/physiology , Humans , Young Adult
4.
Med Eng Phys ; 37(7): 705-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25983067

ABSTRACT

Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered. In this work, we present the impact of window size on the recognition of daily living activities, where transitions between different activities are also taken into account. The study was conducted on nine participants who wore a tri-axial accelerometer on their waist and performed some short (sitting, standing, and transitions between activities) and long (walking, stair descending and stair ascending) duration activities. Five different classifiers were tested, and among the different window sizes, it was found that 1.5 s window size represents the best trade-off in recognition among activities, with an obtained accuracy well above 90%. Differences in recognition accuracy for each activity highlight the utility of developing adaptive segmentation criteria, based on the duration of the activities.


Subject(s)
Accelerometry/methods , Activities of Daily Living , Monitoring, Ambulatory/methods , Pattern Recognition, Automated/methods , Posture , Walking , Accelerometry/instrumentation , Adult , Female , Humans , Male , Monitoring, Ambulatory/instrumentation , Parabrachial Nucleus , Posture/physiology , Time Factors , Walking/physiology , Young Adult
5.
Comput Math Methods Med ; 2013: 343084, 2013.
Article in English | MEDLINE | ID: mdl-24376469

ABSTRACT

Two approaches to the classification of different locomotor activities performed at various speeds are here presented and evaluated: a maximum a posteriori (MAP) Bayes' classification scheme and a Support Vector Machine (SVM) are applied on a 2D projection of 16 features extracted from accelerometer data. The locomotor activities (level walking, stair climbing, and stair descending) were recorded by an inertial sensor placed on the shank (preferred leg), performed in a natural indoor-outdoor scenario by 10 healthy young adults (age 25-35 yrs.). From each segmented activity epoch, sixteen features were chosen in the frequency and time domain. Dimension reduction was then performed through 2D Sammon's mapping. An Artificial Neural Network (ANN) was trained to mimic Sammon's mapping on the whole dataset. In the Bayes' approach, the two features were then fed to a Bayes' classifier that incorporates an update rule, while, in the SVM scheme, the ANN was considered as the kernel function of the classifier. Bayes' approach performed slightly better than SVM on both the training set (91.4% versus 90.7%) and the testing set (84.2% versus 76.0%), favoring the proposed Bayes' scheme as more suitable than the proposed SVM in distinguishing among the different monitored activities.


Subject(s)
Locomotion , Monitoring, Physiologic/instrumentation , Support Vector Machine , Acceleration , Adult , Algorithms , Artificial Intelligence , Bayes Theorem , Exercise , Female , Humans , Male , Monitoring, Physiologic/methods , Motor Activity , Movement , Neural Networks, Computer , Reproducibility of Results , Walking , Wireless Technology
6.
Hum Mov Sci ; 32(6): 1480-94, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24060224

ABSTRACT

The aim of this study was to investigate the muscle coordination underlying pedaling in untrained subjects by using the muscle synergies paradigm, and to connect it with the inter-individual variability of EMG patterns and applied forces. Nine subjects performed a pedaling exercise on a cycle-simulator. Applied forces were recorded by means of instrumented pedals able to measure two force components. EMG signals were recorded from eight muscles of the dominant leg, and Nonnegative Matrix Factorization was applied to extract muscle synergy vectors W and time-varying activation coefficients H. Inter-individual variability was assessed for EMG patterns, force profiles, and H. Four modules were sufficient to reconstruct the muscle activation repertoire for all the subjects (variance accounted for >90% for each muscle). These modules were found to be highly similar between subjects in terms of W (mean r=.89), while most of the variability in force profiles and EMG patterns was reflected, in the muscle synergy structure, in the variability of H. These four modules have a functional interpretation when related to force distribution along the pedaling cycle, and the structure of W is shared with that present in human walking, suggesting the existence of a modular motor control in humans.


Subject(s)
Bicycling/physiology , Biomechanical Phenomena/physiology , Electromyography , Individuality , Muscle, Skeletal/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Weight-Bearing/physiology , Acceleration , Adult , Computer Simulation , Exercise Test , Female , Humans , Kinesthesis/physiology , Male , Motor Skills/physiology , Physical Exertion , Signal Processing, Computer-Assisted
7.
Front Neurorobot ; 3: 3, 2009.
Article in English | MEDLINE | ID: mdl-19949450

ABSTRACT

Modelling is continuously being deployed to gain knowledge on the mechanisms of motor control. Computational models, simulating the behaviour of complex systems, have often been used in combination with soft computing strategies, thus shifting the rationale of modelling from the description of a behaviour to the understanding of the mechanisms behind it. In this context, computational models are preferred to deterministic schemes because they deal better with complex systems. The literature offers some striking examples of biologically inspired modelling, which perform better than traditional approaches when dealing with both learning and adaptivity mechanisms. Can these theoretical studies be transferred into an application framework? That is, can biologically inspired models be used to implement rehabilitative devices? Some evidences, even if preliminary, are presented here, and support an affirmative answer to the previous question, thus opening new perspectives.

8.
J Neuroeng Rehabil ; 5: 5, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18251996

ABSTRACT

BACKGROUND: Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an ad hoc markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb. METHODS: The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in order to determine the accuracy of the system. RESULTS: The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm movements. Main results concern the capability of the system to accurately recreate the movement task by providing a synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of movements with a length of +/- 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets. Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus encouraging future developments of the system in terms of reproducibility of the desired movements. CONCLUSION: A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development, could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing of the stimulation patterns in real conditions.


Subject(s)
Models, Neurological , Movement/physiology , Neural Networks, Computer , Stroke Rehabilitation , Upper Extremity/physiology , Algorithms , Biomechanical Phenomena , Computer Simulation , Electric Stimulation/methods , Humans
9.
J Neuroeng Rehabil ; 4: 33, 2007 Sep 03.
Article in English | MEDLINE | ID: mdl-17767712

ABSTRACT

BACKGROUND: In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. METHODS: The developed system is composed of three main computational blocks: 1) a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2) a pulse generator, which is responsible for the creation of muscular synergies; and 3) a limb model based on two joints (two degrees of freedom) and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. RESULTS: The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. CONCLUSION: The proposed system has been shown to properly simulate the development of internal models and to control the generation and execution of ballistic planar arm movements. Since the neural controller learns to manage movements on the basis of kinematic information and arm characteristics, it could in perspective command a neuroprosthesis instead of a biomechanical model of a human upper limb, and it could thus give rise to novel rehabilitation techniques.


Subject(s)
Arm/physiology , Biomimetics/methods , Electric Stimulation Therapy/methods , Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Neural Networks, Computer , Algorithms , Arm/innervation , Feedback/physiology , Humans , Muscle, Skeletal/innervation , Pattern Recognition, Automated/methods , Therapy, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...