Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Neurosci Methods ; 403: 110053, 2024 03.
Article in English | MEDLINE | ID: mdl-38163446

ABSTRACT

The EQIPD Quality System was designed with the ultimate mission to provide a framework to ensure the quality and integrity of non-regulated preclinical biomedical research. For research quality to be sustained over time, it is crucial to have continuous improvement mechanisms that routinely monitor the research-related processes and enable solutions for identified issues. The present article is focused on these monitoring and assessment procedures that make the EQIPD Quality System a fully functional 'system' (as opposed to a mere collection of guidelines, work instructions and policies). In this context, a critical instrument are the internal and external assessments of the EQIPD Quality System performance described in detail. The assessment procedures emphasize the unique nature of the EQIPD Quality System being user-friendly, flexible and fit-for-purpose. By undergoing the (voluntary) external EQIPD assessment (leading to the EQIPD certification after all EQIPD core requirements have been implemented), a research unit: (i) secures confidence in the quality of data generated, (ii) ensures continuous improvement of research processes, and (iii) obtains an independent seal of quality communicating commitment to best research practices to the research community.


Subject(s)
Biomedical Research , Certification
2.
Elife ; 122023 Nov 23.
Article in English | MEDLINE | ID: mdl-37994903

ABSTRACT

Reproducible research and open science practices have the potential to accelerate scientific progress by allowing others to reuse research outputs, and by promoting rigorous research that is more likely to yield trustworthy results. However, these practices are uncommon in many fields, so there is a clear need for training that helps and encourages researchers to integrate reproducible research and open science practices into their daily work. Here, we outline eleven strategies for making training in these practices the norm at research institutions. The strategies, which emerged from a virtual brainstorming event organized in collaboration with the German Reproducibility Network, are concentrated in three areas: (i) adapting research assessment criteria and program requirements; (ii) training; (iii) building communities. We provide a brief overview of each strategy, offer tips for implementation, and provide links to resources. We also highlight the importance of allocating resources and monitoring impact. Our goal is to encourage researchers - in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees - to think creatively about the many ways they can promote reproducible research and open science practices in their institutions.


Subject(s)
Mentors , Physicians , Humans , Reproducibility of Results , Personnel Selection , Research Personnel
3.
Biomolecules ; 13(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37509150

ABSTRACT

The importance of polyamines (PAs) for the central nervous system (CNS) is well known. Less clear, however, is where PAs in the brain are derived from. Principally, there are three possibilities: (i) intake by nutrition, release into the bloodstream, and subsequent uptake from CNS capillaries, (ii) production by parenchymatous organs, such as the liver, and again uptake from CNS capillaries, and (iii) uptake of precursors, such as arginine, from the blood and subsequent local biosynthesis of PAs within the CNS. The present investigation aimed to unequivocally answer the question of whether PAs, especially the higher ones like spermidine (SPD) and spermine (SPM), can or cannot be taken up into the brain from the bloodstream. For this purpose, a biotin-labelled analogue of spermine (B-X-SPM) was synthesized, characterized, and used to visualize its uptake into brain cells following application to acute brain slices, to the intraventricular space, or to the bloodstream. In acute brain slices there is strong uptake of B-X-SPM into protoplasmic and none in fibrous-type astrocytes. It is also taken up by neurons but to a lesser degree. Under in vivo conditions, astrocyte uptake of B-X-SPM from the brain interstitial fluid is also intense after intraventricular application. In contrast, following intracardial injection, there is no uptake from the bloodstream, indicating that the brain is completely dependent on the local synthesis of polyamines.


Subject(s)
Polyamines , Spermine , Spermidine , Brain , Neurons
4.
BMC Res Notes ; 15(1): 203, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690782

ABSTRACT

The rising rate of preprints and publications, combined with persistent inadequate reporting practices and problems with study design and execution, have strained the traditional peer review system. Automated screening tools could potentially enhance peer review by helping authors, journal editors, and reviewers to identify beneficial practices and common problems in preprints or submitted manuscripts. Tools can screen many papers quickly, and may be particularly helpful in assessing compliance with journal policies and with straightforward items in reporting guidelines. However, existing tools cannot understand or interpret the paper in the context of the scientific literature. Tools cannot yet determine whether the methods used are suitable to answer the research question, or whether the data support the authors' conclusions. Editors and peer reviewers are essential for assessing journal fit and the overall quality of a paper, including the experimental design, the soundness of the study's conclusions, potential impact and innovation. Automated screening tools cannot replace peer review, but may aid authors, reviewers, and editors in improving scientific papers. Strategies for responsible use of automated tools in peer review may include setting performance criteria for tools, transparently reporting tool performance and use, and training users to interpret reports.


Subject(s)
Editorial Policies , Peer Review, Research , Research Design , Research Report
5.
Elife ; 102021 05 24.
Article in English | MEDLINE | ID: mdl-34028353

ABSTRACT

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Subject(s)
Biomedical Research/standards , Drug Evaluation, Preclinical/standards , Research Design/standards , Cooperative Behavior , Data Accuracy , Diffusion of Innovation , Europe , Humans , Interdisciplinary Communication , Quality Control , Quality Improvement , Stakeholder Participation
7.
Clin Sci (Lond) ; 134(20): 2729-2739, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33111948

ABSTRACT

Statistically significant findings are more likely to be published than non-significant or null findings, leaving scientists and healthcare personnel to make decisions based on distorted scientific evidence. Continuously expanding ´file drawers' of unpublished data from well-designed experiments waste resources creates problems for researchers, the scientific community and the public. There is limited awareness of the negative impact that publication bias and selective reporting have on the scientific literature. Alternative publication formats have recently been introduced that make it easier to publish research that is difficult to publish in traditional peer reviewed journals. These include micropublications, data repositories, data journals, preprints, publishing platforms, and journals focusing on null or neutral results. While these alternative formats have the potential to reduce publication bias, many scientists are unaware that these formats exist and don't know how to use them. Our open source file drawer data liberation effort (fiddle) tool (RRID:SCR_017327 available at: http://s-quest.bihealth.org/fiddle/) is a match-making Shiny app designed to help biomedical researchers to identify the most appropriate publication format for their data. Users can search for a publication format that meets their needs, compare and contrast different publication formats, and find links to publishing platforms. This tool will assist scientists in getting otherwise inaccessible, hidden data out of the file drawer into the scientific community and literature. We briefly highlight essential details that should be included to ensure reporting quality, which will allow others to use and benefit from research published in these new formats.


Subject(s)
Biomedical Research , Publication Bias , Software , Publishing
8.
PLoS One ; 15(10): e0240719, 2020.
Article in English | MEDLINE | ID: mdl-33057427

ABSTRACT

How much can we rely on whether what was reported in a study was actually done? Systematic and independent examination of records, documents and processes through audits are a central element of quality management systems. In the context of current concerns about the robustness and reproducibility of experimental biomedical research audits have been suggested as a remedy a number of times. However, audits are resource intense and time consuming, and due to their very nature may be perceived as inquisition. Consequently, there is very little experience or literature on auditing and assessments in the complex preclinical biomedical research environment. To gain some insight into which audit approaches might best suit biomedical research in academia, in this study we have applied a number of them in a typical academic neuroscience environment consisting of twelve research groups with about 100 researchers, students and technicians, utilizing the full gamut of state-of-the-art methodology. Several types of assessments and internal as well as external audits (including the novel format of a peer audit) were systematically explored by a team of quality management specialists. An experimental design template was developed (and is provided here) that takes into account and mitigates difficulties, risks and systematic errors that may occur during the course of a study. All audits were performed according to a pre-defined workflow developed by us. Outcomes were assessed qualitatively. We asked for feedback from participating employees in every final discussion of an audit and documented this in the audit reports. Based on these reports follow-up audits were improved. We conclude that several realistic options for auditing exist which have the potential to improve preclinical biomedical research in academia, and have listed specific recommendations regarding their benefits and provided practical resources for their implementation (e.g. study design and audit templates, audit workflow).


Subject(s)
Biomedical Research/standards , Medical Audit/standards , Feasibility Studies , Humans , Neurology , Self-Assessment
9.
Handb Exp Pharmacol ; 257: 1-17, 2020.
Article in English | MEDLINE | ID: mdl-31768749

ABSTRACT

There has been increasing evidence in recent years that research in life sciences is lacking in reproducibility and data quality. This raises the need for effective systems to improve data integrity in the evolving non-GxP research environment. This chapter describes the critical elements that need to be considered to ensure a successful implementation of research quality standards in both industry and academia. The quality standard proposed is founded on data integrity principles and good research practices and contains basic quality system elements, which are common to most laboratories. Here, we propose a pragmatic and risk-based quality system and associated assessment process to ensure reproducibility and data quality of experimental results while making best use of the resources.


Subject(s)
Biological Science Disciplines/education , Reproducibility of Results , Research/standards , Biomedical Research/education
10.
J Cereb Blood Flow Metab ; 39(2): 313-323, 2019 02.
Article in English | MEDLINE | ID: mdl-28829217

ABSTRACT

Lesion volume measurements with magnetic resonance imaging are widely used to assess outcome in rodent models of stroke. In this study, we improved a mathematical framework to correct lesion size for edema which is based on manual delineation of the lesion and hemispheres. Furthermore, a novel MATLAB toolbox to register mouse brain MR images to the Allen brain atlas is presented. Its capability to calculate edema-corrected lesion size was compared to the manual approach. Automated image registration performed equally well in in a mouse middle cerebral artery occlusion model (Pearson r = 0.976, p = 2.265e-11). Information encapsulated in the registration was used to generate maps of edema induced tissue volume changes. These showed discrepancies to simplified tissue models underlying the manual approach. The presented techniques provide biologically more meaningful, voxel-wise biomarkers of vasogenic edema after stroke.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Brain Edema , Magnetic Resonance Imaging , Stroke , Animals , Brain Edema/diagnostic imaging , Brain Edema/etiology , Disease Models, Animal , Male , Mice , Stroke/complications , Stroke/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL