Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Rev. bras. farmacogn ; 24(6): 644-650, Nov-Dec/2014. tab, graf
Article in English | LILACS | ID: lil-741843

ABSTRACT

The extract of the fruits from Schinus terebinthifolius Raddi, Anacardiaceae, was obtained by exhaustive extraction with methanol. Its fractions and isolated compounds were collected by fractionation with RP-2 column chromatography. The crude extract, the flavonoid fraction and the isolated compound identified as apigenin (1), were investigated regarding its inhibitory action of nitric oxide production by LPS-stimulated macrophages, antioxidant activity by DPPH and the antimycobacterial activity against Mycobacterium bovis BCG. The samples exhibited a significant inhibitory effect on the nitric oxide production (e.g., 1, IC50 19.23 ± 1.64 µg/ml) and also showed antioxidant activity. In addition, S. terebinthifolius samples inhibited the mycobacterial growth ( e.g., 1, IC50 14.53 ± 1.25 µg/ml). The necessary concentration to produce 50% of the maximum response (IC50) of these activities did not elicit a significant cytotoxic effect when compared with the positive control (100% of lysis). The antioxidant and nitric oxide inhibition activity displayed by S. terebinthifolius corroborates its ethnopharmacological use of this specie as an anti-inflammatory. In addition, our results suggest that the flavonoids of S. terebinthifolius are responsible for the activities found. We, describe for the first time the activity against Mycobacterium bovis BCG and the inhibition of nitric oxide production for S. terebinthifolius.

2.
Planta Med ; 77(9): 964-70, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21243585

ABSTRACT

Ten Psychotria species were collected in two fragments of Atlantic Forest in Rio de Janeiro: Psychotria pubigera (P1A and B), P. ruelliifolia (P2), P. suterela (P3), P. stachyoides (P4), P. capitata (P5), P. glaziovii (P6), P. leiocarpa (P7), P. nuda (P8), P. racemosa (P9) and P. vellosiana (P10). Ethanol extracts of these species were evaluated for their antimycobacterial activity, in an attempt to find new antituberculosis agents. Psychotria pubigera (P1A), P. ruelliifolia (P2) and P. stachyoides (P4) were the most active against Mycobacterium. The anti-inflammatory potential of these extracts was also evaluated in vitro to learn if they inhibit nitric oxide (NO) production in macrophages and if they have free-radical scavenging properties, because inflammation is a severe problem caused by tuberculosis, especially when the infection is from M. bovis or M. tuberculosis. Psychotria suterela (P3), P. stachyoides (P4) and P. capitata (P5) were the most active in inhibiting macrophage NO production but they were not the most antioxidant species. This suggests that NO inhibitory activity is not due to the scavenging of NO generated but due to a specific inhibition of iNOS activity or expression. In addition, cytotoxicity was tested in the macrophages (the host cells of the Mycobacterium) and it was verified that the extracts selectively killed the bacteria and not the host cells. When analyzing antimycobacterial, cytotoxicity and NO inhibitory activities in combination, P. stachyoides (P4) was the most promising anti-TB extract tested. Further, indol alkaloids were detected in P. suterela and P. nuda, and 5,6-dihydro-ß-carboline alkaloids in all of the species studied, with the highest amounts found in P. capitata and P. racemosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antitubercular Agents/pharmacology , Plant Extracts/pharmacology , Psychotria/chemistry , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Antitubercular Agents/chemistry , Antitubercular Agents/isolation & purification , Brazil , Cell Line, Tumor , Indoles/chemistry , Inhibitory Concentration 50 , Macrophages/drug effects , Mice , Mycobacterium/drug effects , Nitric Oxide/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Tuberculosis
3.
Biochim Biophys Acta ; 1788(2): 303-13, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19059377

ABSTRACT

H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50=38.4 nM) than Golgi and vacuole pumps (I50=0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Intracellular Membranes/metabolism , Saccharomyces cerevisiae/metabolism , Secretory Pathway , Vacuolar Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/metabolism , Endoplasmic Reticulum/immunology , Golgi Apparatus/drug effects , Golgi Apparatus/immunology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/immunology , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...