Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 19: 1755-1765, 2023.
Article in English | MEDLINE | ID: mdl-38025088

ABSTRACT

Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.

2.
PLoS Negl Trop Dis ; 7(8): e2325, 2013.
Article in English | MEDLINE | ID: mdl-23936574

ABSTRACT

BACKGROUND: Nitric oxide (NO), a key antimicrobial molecule, was previously shown to exert a dual role in paracoccidioidomycosis, an endemic fungal infection in Latin America. In the intravenous and peritoneal models of infection, NO production was associated with efficient fungal clearance but also with non-organized granulomatous lesions. Because paracoccidioidomycosis is a pulmonary infection, we aimed to characterize the role of NO in a pulmonary model of infection. METHODOLOGY/PRINCIPAL FINDINGS: C57Bl/6 wild type (WT) and iNOS(-/-) mice were i.t. infected with 1×10(6) Paracoccidioides brasiliensis yeasts and studied at several post-infection periods. Unexpectedly, at week 2 of infection, iNOS(-/-) mice showed decreased pulmonary fungal burdens associated with an M2-like macrophage profile, which expressed high levels of TGF-ß impaired ability of ingesting fungal cells. This early decreased fungal loads were concomitant with increased DTH reactions, enhanced TNF-α synthesis and intense migration of activated macrophages, CD4(+) and CD8(+) T cells into the lungs. By week 10, iNOS(-/-) mice showed increased fungal burdens circumscribed, however, by compact granulomas containing elevated numbers of activated CD4(+) T cells. Importantly, the enhanced immunological reactivity of iNOS(-/-) mice resulted in decreased mortality rates. In both mouse strains, depletion of TNF-α led to non-organized lesions and excessive influx of inflammatory cells into the lungs, but only the iNOS(-/-) mice showed increased mortality rates. In addition, depletion of CD8(+) cells abolished the increased migration of inflammatory cells and decreased the number of TNF-α and IFN-γ CD4(+) and CD8(+) T cells into the lungs of iNOS(-/-) mice. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated that NO plays a deleterious role in pulmonary paracoccidioidomycosis due to its suppressive action on TNF-α production, T cell immunity and organization of lesions resulting in precocious mortality of mice. It was also revealed that uncontrolled fungal growth can be overcome by an efficient immune response.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lung Diseases, Fungal/pathology , Nitric Oxide Synthase Type II/deficiency , Paracoccidioides/immunology , Paracoccidioidomycosis/pathology , Tumor Necrosis Factor-alpha/immunology , Animals , Colony Count, Microbial , Granuloma/immunology , Granuloma/microbiology , Granuloma/pathology , Humans , Lung/microbiology , Lung/pathology , Lung Diseases, Fungal/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Paracoccidioidomycosis/immunology , Survival Analysis , Time Factors
3.
Infect Immun ; 81(4): 1064-77, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23340311

ABSTRACT

The protective adaptive immune response in paracoccidioidomycosis, a mycosis endemic among humans, is mediated by T cell immunity, whereas impaired T cell responses are associated with severe, progressive disease. The early host response to Paracoccidioides brasiliensis infection is not known since the disease is diagnosed at later phases of infection. Our laboratory established a murine model of infection where susceptible mice reproduce the severe disease, while resistant mice develop a mild infection. This work aimed to characterize the influence of dendritic cells in the innate and adaptive immunity of susceptible and resistant mice. We verified that P. brasiliensis infection induced in bone marrow-derived dendritic cells (DCs) of susceptible mice a prevalent proinflammatory myeloid phenotype that secreted high levels of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-ß, whereas in resistant mice, a mixed population of myeloid and plasmacytoid DCs secreting proinflammatory cytokines and expressing elevated levels of secreted and membrane-bound transforming growth factor ß was observed. In proliferation assays, the proinflammatory DCs from B10.A mice induced anergy of naïve T cells, whereas the mixed DC subsets from resistant mice induced the concomitant proliferation of effector and regulatory T cells (Tregs). Equivalent results were observed during pulmonary infection. The susceptible mice displayed preferential expansion of proinflammatory myeloid DCs, resulting in impaired proliferation of effector T cells. Conversely, the resistant mice developed myeloid and plasmacytoid DCs that efficiently expanded gamma interferon-, IL-4-, and IL-17-positive effector T cells associated with increased development of Tregs. Our work highlights the deleterious effect of excessive innate proinflammatory reactions and provides new evidence for the importance of immunomodulation during pulmonary paracoccidioidomycosis.


Subject(s)
Dendritic Cells/immunology , Disease Resistance , Disease Susceptibility , Paracoccidioides/immunology , Paracoccidioides/pathogenicity , Paracoccidioidomycosis/immunology , T-Lymphocytes/immunology , Animals , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Mice
4.
Infect Immun ; 78(11): 4922-35, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20713624

ABSTRACT

T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro- and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.


Subject(s)
CD28 Antigens/immunology , Lung Diseases, Fungal/immunology , Lung Diseases, Fungal/mortality , Paracoccidioides/pathogenicity , Paracoccidioidomycosis/immunology , Paracoccidioidomycosis/mortality , Animals , CD28 Antigens/genetics , Cytokines/metabolism , Disease Models, Animal , Humans , Liver/immunology , Liver/microbiology , Liver/pathology , Lung/immunology , Lung/microbiology , Lung/pathology , Lung Diseases, Fungal/microbiology , Lung Diseases, Fungal/pathology , Lymphocyte Activation , Mice , Paracoccidioidomycosis/microbiology , Paracoccidioidomycosis/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
5.
Mycopathologia ; 165(4-5): 223-36, 2008.
Article in English | MEDLINE | ID: mdl-18777631

ABSTRACT

Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.


Subject(s)
Immunity, Innate , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Animals , Disease Models, Animal , Genetic Predisposition to Disease , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Mice , Mice, Inbred C57BL , Paracoccidioides/physiology , Paracoccidioidomycosis/genetics , Paracoccidioidomycosis/microbiology
6.
FEMS Immunol Med Microbiol ; 53(1): 1-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18384366

ABSTRACT

The aim of this minireview is to present a concise view of the most important pattern recognition receptors used by the innate immune system to sense and control pathogen growth into host tissues. A brief review of the role of Toll-like receptors (TLRs) in fungal infections followed by some recent results on the function of TLR4, TLR2 and the MyD88 adaptor molecule in the pathogenesis of paracoccidioidomycosis are presented.


Subject(s)
Myeloid Differentiation Factor 88/immunology , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Animals , Humans , Immunity, Innate
7.
J Leukoc Biol ; 83(5): 1088-99, 2008 May.
Article in English | MEDLINE | ID: mdl-18281437

ABSTRACT

Alveolar macrophages (AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10.A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10.A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide (NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL-10 and GM-CSF but low concentrations of NO, IL-12, and MCP-1. The fungicidal ability of B10.A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10.A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.


Subject(s)
Macrophages, Alveolar/microbiology , Macrophages, Alveolar/physiology , Paracoccidioidomycosis/physiopathology , Animals , Cytokines/physiology , Flow Cytometry , Genetic Predisposition to Disease , Immunity, Innate , Mice , Mice, Inbred A , Mice, Inbred Strains , Paracoccidioides/pathogenicity , Paracoccidioidomycosis/genetics , Paracoccidioidomycosis/immunology , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...