Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cells ; 12(6)2023 03 17.
Article in English | MEDLINE | ID: mdl-36980265

ABSTRACT

Asthma is the most common chronic lung disease, with increasing morbidity and mortality worldwide. Accumulation of peribronchial leukocytes is the hallmark of asthma, in particular, eosinophils, which have been reported as the primary cell associated with the induction of airway hyperresponsiveness. Continued exacerbation and accumulation of other leukocytes, such as neutrophils, Th1, and Th17 cells correlate with many of the long-term effects of asthma, such as airway remodeling. We have patented the TnP family of synthetic cyclic peptides, which is in the preclinical phase of developmental studies for chronic inflammatory diseases. The aim of this work was to investigate whether TnP could show anti-inflammatory activity in a murine model of asthma that includes a mixed phenotype of eosinophilic and neutrophilic inflammation. For this, Balb/c mice, sensitized with OVA and exposed to 1% challenge with OVA aerosol, were submitted to prophylactic treatment, receiving TnP at 0.3 mg/kg orally, 1 h before each challenge. We found that sensitized mice challenged with OVA and treated with TnP showed no airway hyperreactivity or lung remodeling. TnP acts systemically in secondary lymphoid organs and locally in the lung, inhibiting the production of Th2/Th17 cytokines. Furthermore, TnP prevented the infiltration of eosinophils and neutrophils in the BAL and lung tissue, inhibited the production of IgE/IgG1, prevented hyperplasia of mucus-producing cells, and decreased the thickening and deposition of sub-epithelial collagen. Our results showed TnP as a candidate molecule for the treatment of airway remodeling associated with inflammatory diseases, such as asthma.


Subject(s)
Airway Remodeling , Asthma , Animals , Mice , Bronchoalveolar Lavage Fluid , Asthma/drug therapy , Cytokines , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
Cells, v. 12, n. 6, 924, mar. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4841

ABSTRACT

Asthma is the most common chronic lung disease, with increasing morbidity and mortality worldwide. Accumulation of peribronchial leukocytes is the hallmark of asthma, in particular, eosinophils, which have been reported as the primary cell associated with the induction of airway hyperresponsiveness. Continued exacerbation and accumulation of other leukocytes, such as neutrophils, Th1, and Th17 cells correlate with many of the long-term effects of asthma, such as airway remodeling. We have patented the TnP family of synthetic cyclic peptides, which is in the preclinical phase of developmental studies for chronic inflammatory diseases. The aim of this work was to investigate whether TnP could show anti-inflammatory activity in a murine model of asthma that includes a mixed phenotype of eosinophilic and neutrophilic inflammation. For this, Balb/c mice, sensitized with OVA and exposed to 1% challenge with OVA aerosol, were submitted to prophylactic treatment, receiving TnP at 0.3 mg/kg orally, 1 h before each challenge. We found that sensitized mice challenged with OVA and treated with TnP showed no airway hyperreactivity or lung remodeling. TnP acts systemically in secondary lymphoid organs and locally in the lung, inhibiting the production of Th2/Th17 cytokines. Furthermore, TnP prevented the infiltration of eosinophils and neutrophils in the BAL and lung tissue, inhibited the production of IgE/IgG1, prevented hyperplasia of mucus-producing cells, and decreased the thickening and deposition of sub-epithelial collagen. Our results showed TnP as a candidate molecule for the treatment of airway remodeling associated with inflammatory diseases, such as asthma.

3.
Cells ; 11(9)2022 04 26.
Article in English | MEDLINE | ID: mdl-35563763

ABSTRACT

Zebrafish are increasingly being utilized as a model to investigate infectious diseases and to advance the understanding of pathogen-host interactions. Here, we take advantage of the zebrafish to recapitulate congenital ZIKV infection and, for the first time, demonstrate that it can be used to model infection and reinfection and monitor anti-viral and inflammatory immune responses, as well as brain growth and eye abnormalities during embryonic development. By injecting a Brazilian strain of ZIKV into the yolk sac of one-cell stage embryos, we confirmed that, after 72 h, ZIKV successfully infected larvae, and the physical condition of the virus-infected hosts included gross morphological changes in surviving embryos (84%), with a reduction in larval head size and retinal damage characterized by increased thickness of the lens and inner nuclear layer. Changes in locomotor activity and the inability to perceive visual stimuli are a result of changes in retinal morphology caused by ZIKV. Furthermore, we demonstrated the ability of ZIKV to replicate in zebrafish larvae and infect new healthy larvae, impairing their visual and neurological functions. These data reinforce the deleterious activity of ZIKV in the brain and visual structures and establish the zebrafish as a model to study the molecular mechanisms involved in the pathology of the virus.


Subject(s)
Eye Injuries , Retinal Diseases , Zika Virus Infection , Zika Virus , Animals , Larva , Zebrafish , Zika Virus/physiology
4.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408954

ABSTRACT

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1ß/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 4 , Adaptor Proteins, Vesicular Transport/metabolism , Animals , DNA , Fish Venoms , Membrane Proteins/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , Nucleotidyltransferases/metabolism , Pore Forming Cytotoxic Proteins , Signal Transduction , Toll-Like Receptor 4/metabolism
5.
Front Immunol ; 13: 857692, 2022.
Article in English | MEDLINE | ID: mdl-35401524

ABSTRACT

TnP is a family of patented synthetic peptides which is in a preclinical development stage with valuable potential therapeutic indication for multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). The use of a preclinical animal model, such as experimental autoimmune encephalomyelitis (EAE) has deepened our knowledge of the immunomodulatory functions of TnP as a drug. We have shown that TnP possesses a disease suppressive function in EAE, ameliorating disease severity by 40% and suppressing the accumulation of T helper (Th)1- and Th17-producing lymphocytes (by 55% and 60%, respectively) in CNS along with activated microglia/macrophages populations (by 33% and 50%, respectively), and also conferred a protective effect anticipating the remyelination process to day 66 compared to day 83 of untreated cuprizone-mice. Here we expanded our knowledge about its effects compared with current first-line disease-modifying therapies (DMT). We demonstrated that prophylactic treatment with TnP generated similar protection to betaseron (30%) or was more effective than glatiramer (44% versus 6%) or fingolimod (50% versus 19%) against the development of clinical symptoms. Although TnP controlled the leukocyte infiltration (87% versus 82%) into demyelinated areas of the spinal cord in the same way as betaseron and fingolimod, it was more effective (72% to 78% decrease) in the long-term control of neuronal degeneration compared to them. Also, when compared to glatiramer, TnP was more efficient in reversing leukocytes infiltration into the spinal cord (55% versus 24%), as well as induced a higher percentage of regulatory cells in spleen (2.9-fold versus 2.3-fold increase over vehicle-treated EAE mice) an in the spinal cord (8-fold versus 6-fold increase over vehicle-treated EAE mice). This specialized TnP profile for inducing immune tolerance and neuronal regeneration has significant therapeutic potential for the treatment of MS and other autoimmune diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Fingolimod Hydrochloride/therapeutic use , Glatiramer Acetate/therapeutic use , Interferon beta-1b/adverse effects , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Peptides/therapeutic use
6.
Article in English | MEDLINE | ID: mdl-35328887

ABSTRACT

Every year, Brazil intensifies its activity in agriculture and, as a result, it has become one of the biggest consumers of pesticides in the world. The high rate of these substances raises environmental and human health concerns. Therefore, we collected papers from PubMed, Scopus, Scielo, and Web of Science databases, from 2015 to 2021. After a blind selection using the software Rayyan QCRI by two authors, 51 studies were included. Researchers from the South and the Southeast Brazilian regions contributed to most publications, from areas that concentrate agricultural commodity complexes. Among the pesticides described in the studies, insecticides, herbicides, and fungicides were the most frequent. The articles reported multiple toxic effects, particularly in rural workers. The results obtained can be used to direct policies to reduce the use of pesticides, and to protect the health of the population.


Subject(s)
Herbicides , Insecticides , Pesticides , Agriculture/methods , Brazil , Herbicides/toxicity , Humans , Insecticides/toxicity , Pesticides/analysis , Pesticides/toxicity
7.
Cells, v. 11, n. 9, p. 157, abr. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4316

ABSTRACT

Zebrafish are increasingly being utilized as a model to investigate infectious diseases and to advance the understanding of pathogen–host interactions. Here, we take advantage of the zebrafish to recapitulate congenital ZIKV infection and, for the first time, demonstrate that it can be used to model infection and reinfection and monitor anti-viral and inflammatory immune responses, as well as brain growth and eye abnormalities during embryonic development. By injecting a Brazilian strain of ZIKV into the yolk sac of one-cell stage embryos, we confirmed that, after 72 h, ZIKV successfully infected larvae, and the physical condition of the virus-infected hosts included gross morphological changes in surviving embryos (84%), with a reduction in larval head size and retinal damage characterized by increased thickness of the lens and inner nuclear layer. Changes in locomotor activity and the inability to perceive visual stimuli are a result of changes in retinal morphology caused by ZIKV. Furthermore, we demonstrated the ability of ZIKV to replicate in zebrafish larvae and infect new healthy larvae, impairing their visual and neurological functions. These data reinforce the deleterious activity of ZIKV in the brain and visual structures and establish the zebrafish as a model to study the molecular mechanisms involved in the pathology of the virus.

8.
Int J Mol Sci, v. 23, n. 7, 3600, mar. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4295

ABSTRACT

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1β/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.

9.
Front Immunol, v. 13, 857692, mar. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4288

ABSTRACT

TnP is a family of patented synthetic peptides which is in a preclinical development stage with valuable potential therapeutic indication for multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). The use of a preclinical animal model, such as experimental autoimmune encephalomyelitis (EAE) has deepened our knowledge of the immunomodulatory functions of TnP as a drug. We have shown that TnP possesses a disease suppressive function in EAE, ameliorating disease severity by 40% and suppressing the accumulation of T helper (Th)1- and Th17-producing lymphocytes (by 55% and 60%, respectively) in CNS along with activated microglia/macrophages populations (by 33% and 50%, respectively), and also conferred a protective effect anticipating the remyelination process to day 66 compared to day 83 of untreated cuprizone-mice. Here we expanded our knowledge about its effects compared with current first-line disease-modifying therapies (DMT). We demonstrated that prophylactic treatment with TnP generated similar protection to betaseron (30%) or was more effective than glatiramer (44% versus 6%) or fingolimod (50% versus 19%) against the development of clinical symptoms. Although TnP controlled the leukocyte infiltration (87% versus 82%) into demyelinated areas of the spinal cord in the same way as betaseron and fingolimod, it was more effective (72% to 78% decrease) in the long-term control of neuronal degeneration compared to them. Also, when compared to glatiramer, TnP was more efficient in reversing leukocytes infiltration into the spinal cord (55% versus 24%), as well as induced a higher percentage of regulatory cells in spleen (2.9-fold versus 2.3-fold increase over vehicle-treated EAE mice) an in the spinal cord (8-fold versus 6-fold increase over vehicle-treated EAE mice). This specialized TnP profile for inducing immune tolerance and neuronal regeneration has significant therapeutic potential for the treatment of MS and other autoimmune diseases.

10.
Int J Environ Res Public Health, v. 19, n. 6, 3198, mar. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4267

ABSTRACT

Every year, Brazil intensifies its activity in agriculture and, as a result, it has become one of the biggest consumers of pesticides in the world. The high rate of these substances raises environmental and human health concerns. Therefore, we collected papers from PubMed, Scopus, Scielo, and Web of Science databases, from 2015 to 2021. After a blind selection using the software Rayyan QCRI by two authors, 51 studies were included. Researchers from the South and the Southeast Brazilian regions contributed to most publications, from areas that concentrate agricultural commodity complexes. Among the pesticides described in the studies, insecticides, herbicides, and fungicides were the most frequent. The articles reported multiple toxic effects, particularly in rural workers. The results obtained can be used to direct policies to reduce the use of pesticides, and to protect the health of the population.

SELECTION OF CITATIONS
SEARCH DETAIL
...