Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 218, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758395

ABSTRACT

The endocytic adaptor protein 2 (AP-2) complex binds dynactin as part of its noncanonical function, which is necessary for dynein-driven autophagosome transport along microtubules in neuronal axons. The absence of this AP-2-dependent transport causes neuronal morphology simplification and neurodegeneration. The mechanisms that lead to formation of the AP-2-dynactin complex have not been studied to date. However, the inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) enhances the transport of newly formed autophagosomes by influencing the biogenesis and protein interactions of Rab-interacting lysosomal protein (RILP), another dynein cargo adaptor. We tested effects of mTORC1 inhibition on interactions between the AP-2 and dynactin complexes, with a focus on their two essential subunits, AP-2ß and p150Glued. We found that the mTORC1 inhibitor rapamycin enhanced p150Glued-AP-2ß complex formation in both neurons and non-neuronal cells. Additional analysis revealed that the p150Glued-AP-2ß interaction was indirect and required integrity of the dynactin complex. In non-neuronal cells rapamycin-driven enhancement of the p150Glued-AP-2ß interaction also required the presence of cytoplasmic linker protein 170 (CLIP-170), the activation of autophagy, and an undisturbed endolysosomal system. The rapamycin-dependent p150Glued-AP-2ß interaction occurred on lysosomal-associated membrane protein 1 (Lamp-1)-positive organelles but without the need for autolysosome formation. Rapamycin treatment also increased the acidification and number of acidic organelles and increased speed of the long-distance retrograde movement of Lamp-1-positive organelles. Altogether, our results indicate that autophagy regulates the p150Glued-AP-2ß interaction, possibly to coordinate sufficient motor-adaptor complex availability for effective lysosome transport.


Subject(s)
Autophagy , Dynactin Complex , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Neurons , Lysosomes/metabolism , Dynactin Complex/metabolism , Animals , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Adaptor Protein Complex 2/metabolism , Sirolimus/pharmacology , Mice , Lysosomal-Associated Membrane Protein 1/metabolism , Autophagosomes/metabolism , Protein Binding
2.
Circulation ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660786

ABSTRACT

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

3.
J Gen Physiol ; 156(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226948

ABSTRACT

During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and ß-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and ß-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.


Subject(s)
Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Protein Kinases , Tubulin , Animals , Humans , Rats , Cell Membrane , Cluster Analysis , HEK293 Cells , Protein Kinases/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism
4.
Cancers (Basel) ; 15(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835464

ABSTRACT

High-dose acetaminophen (AAP) with N-acetylcysteine (NAC) rescue is among the few treatments that has shown activity in phase I trials without achieving dose-limiting toxicity that has not progressed to evaluation in later line studies. While the anti-tumor effects of AAP/NAC appear not to be mediated by glutathione depletion and free radical injury, the mechanism of anti-tumor effects of AAP/NAC has not been definitively characterized. In vitro, the effects of AAP/NAC were evaluated on bone marrow derived macrophages. Effects of AAP on IL-4/STAT6 (M2) or IFN/LPS/STAT1 (M1) signaling and downstream gene and protein expression were studied. NAC reversed the AAP toxicity in the normal liver but did not reverse AAP cytotoxicity against tumor cells in vitro. AAP/NAC selectively inhibited IL-4-induced STAT6 phosphorylation but not IFN/LPS-induced STAT1 phosphorylation. Downstream, AAP/NAC inhibited IL-4 induction of M2-associated genes and proteins but did not inhibit the IFN/LPS induction of M1-associated genes and proteins. In vivo, AAP/NAC inhibited tumor growth in EF43.fgf4 and 4T1 triple-negative breast tumors. Flow cytometry of tumor-associated macrophages revealed that AAP/NAC selectively inhibited M2 polarization. The anti-tumor activity of high-dose AAP/NAC is lost in macrophage-depleted mouse syngeneic tumor models, suggesting a macrophage-dependent mechanism of action. In conclusion, our study is the first to show that high-dose AAP/NAC has profound effects on the tumor immune microenvironment that facilitates immune-mediated inhibition of tumor growth.

5.
PLoS Biol ; 21(5): e3002106, 2023 05.
Article in English | MEDLINE | ID: mdl-37155709

ABSTRACT

The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.


Subject(s)
Fear , Neuronal Plasticity , Disks Large Homolog 4 Protein/metabolism , Phosphorylation , Fear/physiology , Synapses/metabolism , Hippocampus/metabolism
6.
Addict Biol ; 28(5): e13276, 2023 05.
Article in English | MEDLINE | ID: mdl-37186439

ABSTRACT

Calcium/calmodulin-dependent kinase II (CaMKII) is a key enzyme at the glutamatergic synapses. CAMK2A gene variants have been linked with alcohol use disorder (AUD) by an unknown mechanism. Here, we looked for the link between αCaMKII autophosphorylation and the AUD aetiology. Autophosphorylation-deficient heterozygous αCaMKII mutant mice (T286A+/- ) were trained in the IntelliCages to test the role of αCaMKII activity in AUD-related behaviours. The glutamatergic synapses morphology in CeA was studied in the animals drinking alcohol using 3D electron microscopy. We found that T286A+/- mutants consumed less alcohol and were more sensitive to sedating effects of alcohol, as compared to wild-type littermates (WT). After voluntary alcohol drinking, T286A+/- mice had less excitatory synapses in the CeA, as compared to alcohol-naive animals. This change correlated with alcohol consumption was not reversed after alcohol withdrawal and not observed in WT mice. Our study suggests that αCaMKII autophosphorylation affects alcohol consumption by controlling sedative effects of alcohol and preventing synaptic loss in the individuals drinking alcohol. This finding advances our understanding of the molecular processes that regulate alcohol dependence.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Animals , Mice , Alcoholism/genetics , Alcoholism/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Ethanol/pharmacology , Ethanol/metabolism , Phosphorylation/genetics , Substance Withdrawal Syndrome/metabolism , Synapses/metabolism
7.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166711, 2023 08.
Article in English | MEDLINE | ID: mdl-37054998

ABSTRACT

The accelerating accumulation of surplus lipids in the pancreas triggers structural and functional changes in type 2 diabetes-affected islets. Pancreatic ß-cells exhibit a restricted capacity to store fat reservoirs in lipid droplets (LDs), which act as transient buffers to prevent lipotoxic stress. With the increasing incidence of obesity, growing interest has been seen in the intracellular regulation of LD metabolism for ß-cell function. Stearoyl-CoA desaturase 1 (SCD1) is critical for producing unsaturated fatty acyl moieties for fluent storage into and out of LDs, likely affecting the overall rate of ß-cell survival. We explored LD-associated composition and remodeling in SCD1-deprived INS-1E cells and in pancreatic islets in wildtype and SCD1-/- mice in the lipotoxic milieu. Deficiency in the enzymatic activity of SCD1 led to decrease in the size and number of LDs and the lower accumulation of neutral lipids. This occurred in parallel with a higher compactness and lipid order inside LDs, followed by changes in the saturation status and composition of fatty acids within core lipids and the phospholipid coat. The lipidome of LDs was enriched in 18:2n-6 and 20:4n-6 in ß-cells and pancreatic islets. These rearrangements markedly contributed to differences in protein association with the LD surface. Our findings highlight an unexpected molecular mechanism by which SCD1 activity affects the morphology, composition and metabolism of LDs. We demonstrate that SCD1-dependent disturbances in LD enrichment can impact pancreatic ß-cells and islet susceptibility to palmitate, which may have considerable diagnostic and methodological value for the characterization of LDs in human ß-cells in type 2 diabetes patients.


Subject(s)
Diabetes Mellitus, Type 2 , Palmitates , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
8.
Cell Mol Life Sci ; 79(12): 603, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36434396

ABSTRACT

Ataxia telangiectasia mutated (ATM) is a serine-threonine protein kinase and important regulator of the DNA damage response (DDR). One critical ATM target is the structural subunit A (PR65-S401) of protein phosphatase 2A (PP2A), known to regulate diverse cellular processes such as mitosis and cell growth as well as dephosphorylating many proteins during the recovery from the DDR. We generated mouse embryonic fibroblasts expressing PR65-WT, -S401A (cannot be phosphorylated), and -S401D (phospho-mimetic) transgenes. Significantly, S401 mutants exhibited extensive chromosomal aberrations, impaired DNA double-strand break (DSB) repair and underwent increased mitotic catastrophe after radiation. Both S401A and the S401D cells showed impaired DSB repair (nonhomologous end joining and homologous recombination repair) and exhibited delayed DNA damage recovery, which was reflected in reduced radiation survival. Furthermore, S401D cells displayed increased ERK and AKT signaling resulting in enhanced growth rate further underscoring the multiple roles ATM-PP2A signaling plays in regulating prosurvival responses. Time-lapse video and cellular localization experiments showed that PR65 was exported to the cytoplasm after radiation by CRM1, a nuclear export protein, in line with the very rapid pleiotropic effects observed. A putative nuclear export sequence (NES) close to S401 was identified and when mutated resulted in aberrant PR65 shuttling. Our study demonstrates that the phosphorylation of a single, critical PR65 amino acid (S401) by ATM fundamentally controls the DDR, and balances DSB repair quality, cell survival and growth by spatiotemporal PR65 nuclear-cytoplasmic shuttling mediated by the nuclear export receptor CRM1.


Subject(s)
Ataxia Telangiectasia , Animals , Mice , Ataxia Telangiectasia/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Active Transport, Cell Nucleus , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Nuclear Proteins/metabolism , DNA Damage
9.
Sci Rep ; 12(1): 15297, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36097278

ABSTRACT

The application of established cell viability assays such as the commonly used trypan blue staining method to coral cells is not straightforward due to different culture parameters and different cellular features specific to mammalian cells compared to marine invertebrates. Using Pocillopora damicornis as a model, we characterized the autofluorescence and tested different fluorescent dye pair combinations to identify alternative viability indicators. The cytotoxicity of different representative molecules, namely small organic molecules, proteins and nanoparticles (NP), was measured after 24 h of exposure using the fluorescent dye pair Hoechst 33342 and SYTOX orange. Our results show that this dye pair can be distinctly measured in the presence of fluorescent proteins plus chlorophyll. P. damicornis cells exposed for 24 h to Triton-X100, insulin or titanium dioxide (TiO2) NPs, respectively, at concentrations ranging from 0.5 to 100 µg/mL, revealed a LC50 of 0.46 µg/mL for Triton-X100, 6.21 µg/mL for TiO2 NPs and 33.9 µg/mL for insulin. This work presents the approach used to customize dye pairs for membrane integrity-based cell viability assays considering the species- and genotype-specific autofluorescence of scleractinian corals, namely: endogenous fluorescence characterization followed by the selection of dyes that do not overlap with endogenous signals.


Subject(s)
Anthozoa , Insulins , Animals , Anthozoa/metabolism , Chlorophyll/metabolism , Fluorescent Dyes/metabolism , Insulins/metabolism , Mammals , Staining and Labeling
10.
Proc Natl Acad Sci U S A ; 119(39): e2204396119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122218

ABSTRACT

Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes.


Subject(s)
Phosphatidylserines , Sphingosine , Ceramides/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Isoenzymes/metabolism , Liposomes/metabolism , Lysophospholipids , Phosphatidylserines/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism
11.
Cell Rep ; 38(7): 110352, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172152

ABSTRACT

Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.


Subject(s)
Chromatin/metabolism , Histone Deacetylase 1/metabolism , Neurons/metabolism , Animals , Calcium Signaling , Chromatin/ultrastructure , Chromosomes, Mammalian/metabolism , Energy Metabolism , Hippocampus/cytology , Long-Term Potentiation , Mice, Inbred C57BL , Rats, Wistar , Transcription, Genetic
12.
Brain Pathol ; 32(2): e13034, 2022 03.
Article in English | MEDLINE | ID: mdl-34729854

ABSTRACT

Mild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long-term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation. In contrast to the examination of these processes in the acute phase of injury, the chronic-phase burden of TAI and/or its implications for retrograde neuronal perturbation or death have received little consideration. To critically assess this issue, murine neocortical tissue was investigated at acute (24-h postinjury, 24hpi) and chronic time points (28-days postinjury, 28dpi) after singular or repetitive mTBI induced by central fluid percussion injury (cFPI). Neurons were immunofluorescently labeled for NeuroTrace and NeuN (all neurons), p-c-Jun (axotomized neurons) and DRAQ5 (cell nuclei), imaged in 3D and quantified in automated manner. Single mTBI produced axotomy in 10% of neurons at 24hpi and the percentage increased after repetitive injury. The fraction of p-c-Jun+ neurons decreased at 28dpi but without neuronal loss (NeuroTrace), suggesting their reorganization and/or repair following TAI. In contrast, NeuN+ neurons decreased with repetitive injury at 24hpi while the corresponding fraction of NeuroTrace+ neurons decreased over 28dpi. Attenuated NeuN expression was linked exclusively to non-axotomized neurons at 24hpi which extended to the axotomized at 28dpi, revealing a delayed response of the axotomized neurons. Collectively, we demonstrate an increased burden of TAI after repetitive mTBI, which is most striking in the acute phase response to the injury. Our finding of widespread axotomy in large fields of intact neurons contradicts the notion that repetitive mTBI elicits progressive neuronal death, rather, emphasizing the importance of axotomy-mediated change.


Subject(s)
Brain Concussion , Brain Injuries , Acute-Phase Reaction/complications , Acute-Phase Reaction/metabolism , Animals , Axons/metabolism , Brain Concussion/complications , Brain Concussion/metabolism , Brain Injuries/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Mice , Nerve Tissue Proteins/metabolism
13.
J Physiol ; 599(13): 3337-3361, 2021 07.
Article in English | MEDLINE | ID: mdl-33963564

ABSTRACT

KEY POINTS: In adult ventricular myocytes, the slow delayed rectifier (IKs ) channels are distributed on the surface sarcolemma, not t-tubules. In adult ventricular myocytes, KCNQ1 and KCNE1 have distinct cell surface and cytoplasmic pools. KCNQ1 and KCNE1 traffic from the endoplasmic reticulum to the plasma membrane by separate routes, and assemble into IKs channels on the cell surface. Liquid chromatography/tandem mass spectrometry applied to affinity-purified KCNQ1 and KCNE1 interacting proteins reveals novel interactors involved in protein trafficking and assembly. Microtubule plus-end binding protein 1 (EB1) binds KCNQ1 preferentially in its dimer form, and promotes KCNQ1 to reach the cell surface. An LQT1-associated mutation, Y111C, reduces KCNQ1 binding to EB1 dimer. ABSTRACT: Slow delayed rectifier (IKs ) channels consist of KCNQ1 and KCNE1. IKs functions as a 'repolarization reserve' in the heart by providing extra current for ventricular action potential shortening during ß-adrenergic stimulation. There has been much debate about how KCNQ1 and KCNE1 traffic in cells, where they associate to form IKs channels, and the distribution pattern of IKs channels relative to ß-adrenergic signalling complex. We used experimental strategies not previously applied to KCNQ1, KCNE1 or IKs , to provide new insights into these issues. 'Retention-using-selected-hook' experiments showed that newly translated KCNE1 constitutively trafficked through the conventional secretory path to the cell surface. KCNQ1 largely stayed in the endoplasmic reticulum, although dynamic KCNQ1 vesicles were observed in the submembrane region. Disulphide-bonded KCNQ1/KCNE1 constructs reported preferential association after they had reached cell surface. An in situ proximity ligation assay detected IKs channels in surface sarcolemma but not t-tubules of ventricular myocytes, similar to the reported location of adenylate cyclase 9/yotiao. Fluorescent protein-tagged KCNQ1 and KCNE1, in conjunction with antibodies targeting their extracellular epitopes, detected distinct cell surface and cytoplasmic pools of both proteins in myocytes. We conclude that, in cardiomyocytes, KCNQ1 and KCNE1 traffic by different routes to surface sarcolemma where they assemble into IKs channels. This mode of delayed channel assembly helps IKs fulfil its function of repolarization reserve. Proteomic experiments revealed a novel KCNQ1 interactor, microtubule plus-end binding protein 1 (EB1). EB1 dimer (active form) bound KCNQ1 and increased its surface level. An LQT1 mutation, Y111C, reduced KCNQ1 binding to EB1 dimer.


Subject(s)
KCNQ1 Potassium Channel , Potassium Channels, Voltage-Gated , Cell Membrane , KCNQ1 Potassium Channel/genetics , Myocytes, Cardiac , Proteomics
14.
J Neurosci ; 41(11): 2329-2343, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33472821

ABSTRACT

Cognitive processes that require spatial information rely on synaptic plasticity in the dorsal CA1 area (dCA1) of the hippocampus. Since the function of the hippocampus is impaired in aged individuals, it remains unknown how aged animals make spatial choices. Here, we used IntelliCage to study behavioral processes that support spatial choices of aged female mice living in a group. As a proxy of training-induced synaptic plasticity, we analyzed the morphology of dendritic spines and the expression of a synaptic scaffold protein, PSD-95. We observed that spatial choice training in young adult mice induced correlated shrinkage of dendritic spines and downregulation of PSD-95 in dCA1. Moreover, long-term depletion of PSD-95 by shRNA in dCA1 limited correct choices to a reward corner, while reward preference was intact. In contrast, old mice used behavioral strategies characterized by an increased tendency for perseverative visits and social interactions. This strategy resulted in a robust preference for the reward corner during the spatial choice task. Moreover, training decreased the correlation between PSD-95 expression and the size of dendritic spines. Furthermore, PSD-95 depletion did not impair place choice or reward preference in old mice. Thus, our data indicate that while young mice require PSD-95-dependent synaptic plasticity in dCA1 to make correct spatial choices, old animals observe cage mates and stick to a preferred corner to seek the reward. This strategy is resistant to the depletion of PSD-95 in the CA1 area. Overall, our study demonstrates that aged mice combine alternative behavioral and molecular strategies to approach and consume rewards in a complex environment.SIGNIFICANCE STATEMENT It remains poorly understood how aging affects behavioral and molecular processes that support cognitive functions. It is, however, essential to understand these processes to develop therapeutic interventions that support successful cognitive aging. Our data indicate that while young mice require PSD-95-dependent synaptic plasticity in dCA1 to make correct spatial choices (i.e., choices that require spatial information), old animals observe cage mates and stick to a preferred corner to seek the reward. This strategy is resistant to the depletion of PSD-95 in the CA1 area. Overall, our study demonstrates that aged mice combine alternative behavioral and molecular strategies to approach and consume rewards in a complex environment. Second, the contribution of PSD-95-dependent synaptic functions in spatial choice changes with age.


Subject(s)
CA1 Region, Hippocampal/physiology , Choice Behavior/physiology , Disks Large Homolog 4 Protein/physiology , Space Perception/physiology , Aging/physiology , Aging/psychology , Animals , Dendritic Spines/physiology , Disks Large Homolog 4 Protein/genetics , Environment , Female , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Reward , Social Interaction
16.
Cereb Cortex ; 30(4): 2573-2585, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31800021

ABSTRACT

It is generally accepted that formation and storage of memory relies on alterations of the structure and function of brain circuits. However, the structural data, which show learning-induced and long-lasting remodeling of synapses, are still very sparse. Here, we reconstruct 1927 dendritic spines and their postsynaptic densities (PSDs), representing a postsynaptic part of the glutamatergic synapse, in the hippocampal area CA1 of the mice that underwent spatial training. We observe that in young adult (5 months), mice volume of PSDs, but not the volume of the spines, is increased 26 h after the training. The training-induced growth of PSDs is specific for the dendritic spines that lack smooth endoplasmic reticulum and spine apparatuses, and requires autophosphorylation of αCaMKII. Interestingly, aging alters training-induced ultrastructural remodeling of dendritic spines. In old mice, both the median volumes of dendritic spines and PSDs shift after training toward bigger values. Overall, our data support the hypothesis that formation of memory leaves long-lasting footprint on the ultrastructure of brain circuits; however, the form of circuit remodeling changes with age.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dendritic Spines/enzymology , Memory, Long-Term/physiology , Post-Synaptic Density/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Dendritic Spines/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/physiology , Post-Synaptic Density/genetics , Post-Synaptic Density/ultrastructure
17.
J Mol Cell Cardiol ; 135: 1-9, 2019 10.
Article in English | MEDLINE | ID: mdl-31362018

ABSTRACT

BACKGROUND: K channel interacting protein 2 (KChIP2), initially cloned as Kv4 channel modulator, is a multi-tasking protein. In addition to modulating several cardiac ion channels at the plasma membrane, it can also modulate microRNA transcription inside nuclei, and interact with presenilins to modulate Ca release through RyR2 in the cytoplasm. However, the mechanism regulating its subcellular distribution is not clear. OBJECTIVE: We tested whether palmitoylation drives KChIP2 trafficking and distribution in cells, and whether the distribution pattern of KChIP2 in cardiac myocytes is sensitive to cellular milieu. METHOD: We conducted imaging and biochemical experiments on palmitoylatable and unpalmitoylatable KChIP2 variants expressed in COS-7 cells and in cardiomyocytes, and on native KChIP2 in myocytes. RESULTS: In COS-7 cells, palmitoylatable KChIP2 clustered to plasma membrane, while unpalmitoylatable KChIP2 exhibited higher cytoplasmic mobility and faster nuclear entry. The same differences in distribution and mobility were observed when these KChIP2 variants were expressed in cardiac myocytes, indicating that the palmitoylation-dependent distribution and trafficking are intrinsic properties of KChIP2. Importantly, acute stress in a rat model of cardiac arrest/resuscitation induced changes in native KChIP2 resembling those of KChIP2 depalmitoylation, promoting KChIP2 nuclear entry. CONCLUSION: The palmitoylation status of KChIP2 determines its subcellular distribution in cardiac myocytes. Stress promotes nuclear entry of KChIP2, diverting it from ion channel modulation at the plasma membrane to other functions in the nuclear compartment.


Subject(s)
Heart Arrest/genetics , Kv Channel-Interacting Proteins/genetics , Lipoylation/genetics , Potassium/metabolism , Animals , COS Cells , Cell Membrane/genetics , Chlorocebus aethiops , Cytoplasm/genetics , Cytoplasm/metabolism , Heart Arrest/metabolism , Heart Arrest/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Palmitates/pharmacology , Rats , Ryanodine Receptor Calcium Release Channel/genetics
18.
Sci Rep ; 9(1): 1693, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737431

ABSTRACT

Structural plasticity of dendritic spines is thought to underlie memory formation. Size of a dendritic spine is considered proportional to the size of its postsynaptic density (PSD), number of glutamate receptors and synaptic strength. However, whether this correlation is true for all dendritic spine volumes, and remains stable during synaptic plasticity, is largely unknown. In this study, we take advantage of 3D electron microscopy and reconstruct dendritic spines and cores of PSDs from the stratum radiatum of the area CA1 of organotypic hippocampal slices. We observe that approximately 1/3 of dendritic spines, in a range of medium sizes, fail to reach significant correlation between dendritic spine volume and PSD surface area or PSD-core volume. During NMDA receptor-dependent chemical long-term potentiation (NMDAR-cLTP) dendritic spines and their PSD not only grow, but also PSD area and PSD-core volume to spine volume ratio is increased, and the correlation between the sizes of these two is tightened. Further analysis specified that only spines that contain smooth endoplasmic reticulum (SER) grow during cLTP, while PSD-cores grow irrespectively of the presence of SER in the spine. Dendritic spines with SER also show higher correlation of the volumetric parameters than spines without SER, and this correlation is further increased during cLTP only in the spines that contain SER. Overall, we found that correlation between PSD surface area and spine volume is not consistent across all spine volumes, is modified and tightened during synaptic plasticity and regulated by SER.


Subject(s)
Dendritic Spines/metabolism , Neurons/cytology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Mice , Microscopy, Confocal , Neuronal Plasticity , Neurons/metabolism , Primary Cell Culture , Rats , Synaptic Transmission , Time-Lapse Imaging
19.
Biochim Biophys Acta Gen Subj ; 1862(12): 2701-2713, 2018 12.
Article in English | MEDLINE | ID: mdl-30251660

ABSTRACT

BACKGROUND: Neurosecretion is the multistep process occurring in separate spatial and temporal cellular boundaries which complicates its comprehensive analysis. Most of the research are focused on one distinct stage of synaptic vesicle recycling. Here, we describe approaches for complex analysis of synaptic vesicle (SV) endocytosis and separate steps of exocytosis at the level of presynaptic bouton and highly purified SVs. METHODS: Proposed fluorescence-based strategies and analysis of neurotransmitter transport provided the advantages in studies of exocytosis steps. We evaluated SV docking/tethering, their Ca2+-dependent fusion and release of neurotransmitters gamma-aminobutyric acid (GABA) and glutamate in two animal models. RESULTS: Approaches enabled us to study: 1) endocytosis/Ca2+-dependent release of fluorescent carbon nanodots (CNDs) during stimulation of nerve terminals; 2) the action of levetiracetam, modulator of SV glycoprotein SV2, on fusion competence of SVs and stimulated release of GABA and glutamate; 3) impairments of several steps of neurosecretion under vitamin D3 deficiency. CONCLUSIONS: Our algorithm enabled us to verify the method validity for multidimensional analysis of SV turnover. By increasing SV docking and the size of readily releasable pool (RRP), levetiracetam is able to selectively enhance the stimulated GABA secretion in hippocampal neurons. Findings suggest that SV2 regulates RRP through impact on the number of docked/primed SVs. GENERAL SIGNIFICANCE: Methodology can be widely applied to study the stimulated neurosecretion in presynapse, regulation of SV docking, their Ca2+-dependent fusion with target membranes, quantitative analysis of expression of neuron-specific proteins, as well as for testing the efficiency of pre-selected designed neuroactive substances.


Subject(s)
Levetiracetam/pharmacology , Neurosecretion/drug effects , Animals , Anticonvulsants/pharmacology , Cholecalciferol/deficiency , Endocytosis , Exocytosis , Fluorescence , Hippocampus/drug effects , Hippocampus/metabolism , Models, Animal , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Vitamin D Deficiency/physiopathology , gamma-Aminobutyric Acid/metabolism
20.
ACS Chem Neurosci ; 9(6): 1304-1316, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29537813

ABSTRACT

We found previously that fear conditioning by combined stimulation of a row B facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) leads to expansion of the cortical representation of the "trained" row, labeled with 2-deoxyglucose (2DG), in the layer IIIb/IV of the adult mouse the primary somatosensory cortex (S1) 24 h later. We have observed that these learning-dependent plastic changes are manifested by increased expression of somatostatin, cholecystokinin (SST+, CCK+) but not parvalbumin (PV+) immunopositive interneurons We have expanded this research and quantified a numerical value of CB1-expressing and PV-expressing GABAergic axon terminals (CB1+ and PV+ immunopositive puncta) that innervate different segments of postsynaptic cells in the barrel hollows of S1 cortex. We used 3D microscopy to identify the CB+ and PV+ puncta in the barrel cortex "trained" and the control hemispheres CS+UCS group and in controls: Pseudoconditioned, CS-only, UCS-only, and naive animals. We have identified that (i) the association between whisker-shock "trained" barrel B hollows and CB1+, but not PV+ puncta expression remained significant after Bonferroni correction, (ii) CS+UCS has had a significant increasing effect on expression of CB1+ but not PV+ puncta in barrel cortex "trained" hemisphere, and (iii) the pseudoconditioning had a significant decreasing effect on expression of CB1+, but not on PV+ puncta in barrel cortex, both trained and untrained hemispheres. It is correlated to disturbing behaviors. The results suggest that CB1+ puncta regulation is specifically linked with mechanisms leading to learning-dependent plasticity in S1 cortex.


Subject(s)
Learning/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Receptor, Cannabinoid, CB1/metabolism , Animals , Behavior, Animal/physiology , Conditioning, Classical/physiology , Interneurons/metabolism , Parvalbumins/metabolism , Presynaptic Terminals/metabolism , Somatosensory Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...