Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 13266, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31501456

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Prog Brain Res ; 248: 139-156, 2019.
Article in English | MEDLINE | ID: mdl-31239127

ABSTRACT

We have recently reported that objects seen at near distances require adjustments of the relative torsion of the eyes to avoid blurred binocular images or double vision and ultimately to allow binocular fusion. The reason underlying these rotational adjustments is that converging eye movements undo the eyes' torsional alignment, generating disparate binocular images of objects outside the horizontal plane of regard. We show mathematically that it is the distance between the two eyes, their relative orientation in the frontal plane and the distances from each eye to the binocularly intended visual target, that determine the binocular alignment of the lines of sight. As an example, we analyze the binocular disparity field that is generated when a viewer examines objects on a planar surface whose viewing distances differ in each gaze direction. The underlying geometric computations are simple, and require no explicit knowledge of 3D eye movement kinematics.


Subject(s)
Depth Perception/physiology , Models, Theoretical , Retina/physiology , Vision, Binocular/physiology , Visual Fields/physiology , Humans
3.
Sci Rep ; 8(1): 10666, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30006553

ABSTRACT

When an observer scans the visual surround, the images cast on the two retinae are slightly different due to the different viewpoints of the two eyes. Objects in the horizontal plane of regard can be seen single by aligning the lines of sight without changing the torsional stance of the eyes. Due to the peculiar ocular kinematics this is not possible for objects above or below the horizontal plane of regard. We provide evidence that binocular fusion can be achieved independently of viewing direction by adjusting the mutual torsional orientation of the eyes in the frontal plane. We characterize the fusion positions of the eyes across the oculomotor range by deriving simple trigonometric equations for the required torsion as a function of gaze direction and compute the iso-torsion contours yielding binocular fusion. Finally, we provide experimental evidence that eye positions in far-to-near re-fixation saccades indeed converge towards the predicted positions by adjusting the torsion of the eyes. This is the first report that describes the three-dimensional orientation of the eyes at binocular fusion positions based on the three-dimensional ocular kinematics. It closes a gap between the sensory and the motor side of binocular vision and stereoscopy.


Subject(s)
Eye Movements/physiology , Models, Biological , Vision, Binocular/physiology , Animals , Biomechanical Phenomena , Macaca mulatta , Photic Stimulation , Retina/physiology
4.
Mol Ecol ; 27(8): 1794-1807, 2018 04.
Article in English | MEDLINE | ID: mdl-29271011

ABSTRACT

Symbioses between anaerobic or microaerophilic protists and prokaryotes are common in anoxic and oxygen-depleted habitats ranging from marine sediments to gastrointestinal tracts. Nevertheless, little is known about the mechanisms of metabolic interaction between partners. In these putatively syntrophic associations, consumption of fermentative end products (e.g., hydrogen) by the prokaryotic symbionts is thought to facilitate protistan anaerobic metabolism. Here, we employed metagenomic and metatranscriptomic sequencing of a microaerophilic or anaerobic karyorelictid ciliate and its prokaryotic symbionts from oxygen-depleted Santa Barbara Basin (CA, USA) sediments to assess metabolic coupling within this consortium. This sequencing confirmed the predominance of deltaproteobacterial symbionts from the Families Desulfobacteraceae and Desulfobulbaceae and suggested active symbiont reduction of host-provided sulphate, transfer of small organic molecules from host to symbionts and hydrogen cycling among the symbionts. In addition, patterns of gene expression indicated active cell division by the symbionts, their growth via autotrophic processes and nitrogen exchange with the ciliate host. Altogether, this research underscores the importance of symbiont metabolism to host fermentative metabolism and, thus, likely its success in anoxic and low-oxygen habitats, but also suggests ciliate-associated prokaryotes play a role in important biogeochemical processes.


Subject(s)
Anaerobiosis/genetics , Bacteria, Anaerobic/metabolism , Geologic Sediments , Symbiosis/genetics , Bacteria, Anaerobic/genetics , Ciliophora/genetics , Ciliophora/metabolism , Hydrogen/metabolism , Metagenomics , Nitrogen/metabolism , Oxygen/metabolism , Phylogeny
5.
J Neurophysiol ; 116(6): 2841-2856, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27655969

ABSTRACT

We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images.


Subject(s)
Fixation, Ocular/physiology , Models, Biological , Movement/physiology , Space Perception/physiology , Vision, Binocular/physiology , Vision, Ocular/physiology , Animals , Biomechanical Phenomena , Female , Macaca mulatta
6.
Front Neuroanat ; 9: 95, 2015.
Article in English | MEDLINE | ID: mdl-26257611

ABSTRACT

In all vertebrates the eyes are moved by six pairs of extraocular muscles enabling horizontal, vertical and rotatory movements. Recent work showed that each extraocular muscle is controlled by two motoneuronal groups: (1) Motoneurons of singly-innervated muscle fibers (SIF) that lie within the boundaries of motonuclei mediating a fast muscle contraction; and (2) motoneurons of multiply-innervated muscle fibers (MIF) in the periphery of motonuclei mediating a tonic muscle contraction. Currently only limited data about the transmitter inputs to the SIF and MIF motoneurons are available. Here we performed a quantitative study on the transmitter inputs to SIF and MIF motoneurons of individual muscles in the oculomotor and trochlear nucleus in monkey. Pre-labeled motoneurons were immunostained for GABA, glutamate decarboxylase, GABA-A receptor, glycine transporter 2, glycine receptor 1, and vesicular glutamate transporters 1 and 2. The main findings were: (1) the inhibitory control of SIF motoneurons for horizontal and vertical eye movements differs. Unlike in previous primate studies a considerable GABAergic input was found to all SIF motoneuronal groups, whereas a glycinergic input was confined to motoneurons of the medial rectus (MR) muscle mediating horizontal eye movements and to those of the levator palpebrae (LP) muscle elevating the upper eyelid. Whereas SIF and MIF motoneurons of individual eye muscles do not differ numerically in their GABAergic, glycinergic and vGlut2 input, vGlut1 containing terminals densely covered the supraoculomotor area (SOA) targeting MR MIF motoneurons. It is reasonable to assume that the vGlut1 input affects the near response system in the SOA, which houses the preganglionic neurons mediating pupillary constriction and accommodation and the MR MIF motoneurones involved in vergence.

7.
Eur J Histochem ; 59(1): 2460, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25820561

ABSTRACT

The responses of Ammonia parkinsoniana (Foraminifera) exposed to different concentrations of lead (Pb) were evaluated at the cytological level. Foraminifera-bearing sediments were placed in mesocosms that were housed in aquaria each with seawater of a different lead concentration. On the basis of transmission electron microscopy and environmental scanning electron microscopy coupled with energy dispersive spectrometer analyses, it was possible to recognize numerous morphological differences between untreated (i.e., control) and treated (i.e., lead enrichment) specimens. In particular, higher concentrations of this pollutant led to numerical increase of lipid droplets characterized by a more electron-dense core, proliferation of residual bodies, a thickening of the organic lining, mitochondrial degeneration, autophagosome proliferation and the development of inorganic aggregates.  All these cytological modifications might be related to the pollutant-induced stress and some of them such as the thickening of organic lining might suggest a potential mechanism of protection adopted by foraminifera.


Subject(s)
Foraminifera/drug effects , Lead/toxicity , Water Pollutants, Chemical/toxicity , Dose-Response Relationship, Drug , Foraminifera/ultrastructure , Microscopy, Electron, Transmission
8.
J Neurophysiol ; 113(9): 3197-208, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25717167

ABSTRACT

We have analyzed the three-dimensional spatiotemporal characteristics of saccadic refixations between far and near targets in three behaviorally trained rhesus monkeys. The kinematics underlying these rapid eye movements can be accurately described by rotations of the eyes in four different planes, namely, first disconjugate rotations in the horizontal plane of regard converging the eyes toward the near target, followed by rotations in each eye's vertical direction plane, and finally, disconjugate rotations in a common frontoparallel plane. This compounded rotation of the eye was underlying an initially fast-rising variable torsion that typically overshot the final torsion, which the eyes attained at the time of target acquisition. The torsion consisted of a coarse, widely varying component of opposite polarity in the two eyes, which contained a more robust, much smaller modulation that sharply increased toward the end of saccades. The reorientation of the eyes in torsion depended on each eye's azimuth, elevation, and target distance. We conclude that refixation saccades are generated by motor commands that control ocular torsion in concert with the saccade generator, which operates in Donders-Listing kinematics underlying Listing's law.


Subject(s)
Adaptation, Physiological/physiology , Orientation/physiology , Saccades/physiology , Space Perception/physiology , Animals , Biomechanical Phenomena , Macaca mulatta , Models, Biological , Photic Stimulation , Rotation
9.
PLoS One ; 9(4): e95234, 2014.
Article in English | MEDLINE | ID: mdl-24751602

ABSTRACT

One of the hallmarks of an eye movement that follows Listing's law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing's law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing's law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain.


Subject(s)
Eye Movements/physiology , Macaca mulatta/physiology , Visual Fields/physiology , Animals , Biomechanical Phenomena , Female , Motion
10.
Geobiology ; 11(3): 234-51, 2013 May.
Article in English | MEDLINE | ID: mdl-23398981

ABSTRACT

Microbialites (stromatolites and thrombolites) are mineralized mat structures formed via the complex interactions of diverse microbial-mat communities. At Highborne Cay, in the Bahamas, the carbonate component of these features is mostly comprised of ooids. These are small, spherical to ellipsoidal grains characterized by concentric layers of calcium carbonate and organic matter and these sand-sized particles are incorporated with the aid of extra-cellular polymeric substances (EPS), into the matrix of laminated stromatolites and clotted thrombolite mats. Here, we present a comparison of the bacterial diversity within oolitic sand samples and bacterial diversity previously reported in thrombolitic and stromatolitic mats of Highborne Cay based on analysis of clone libraries of small subunit ribosomal RNA gene fragments and lipid biomarkers. The 16S-rRNA data indicate that the overall bacterial diversity within ooids is comparable to that found within thrombolites and stromatolites of Highborne Cay, and this significant overlap in taxonomic groups suggests that ooid sands may be a source for much of the bacterial diversity found in the local microbialites. Cyanobacteria were the most diverse taxonomic group detected, followed by Alphaproteobacteria, Gammaproteobacteria, Planctomyces, Deltaproteobacteria, and several other groups also found in mat structures. The distributions of intact polar lipids, the fatty acids derived from them, and bacteriohopanepolyols provide broad general support for the bacterial diversity identified through analysis of nucleic acid clone libraries.


Subject(s)
Bacteria/chemistry , Biodiversity , Biota , Geologic Sediments/analysis , Silicon Dioxide , Bacteria/genetics , Bahamas , Base Sequence , Biomarkers/analysis , Calcium Carbonate/analysis , Chromatography, High Pressure Liquid , Lipids/analysis , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
J Neurophysiol ; 109(1): 183-92, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23054597

ABSTRACT

Although the motion of the line of sight is a straightforward consequence of a particular rotation of the eye, it is much trickier to predict the rotation underlying a particular motion of the line of sight in accordance with Listing's law. Helmholtz's notion of the direction-circle together with the notion of primary and secondary reference directions in visual space provide an elegant solution to this reverse engineering problem, which the brain is faced with whenever generating a saccade. To test whether these notions indeed apply for saccades, we analyzed three-dimensional eye movements recorded in four rhesus monkeys. We found that on average saccade trajectories closely matched with the associated direction-circles. Torsional, vertical, and horizontal eye position of saccades scattered around the position predicted by the associated direction-circles with standard deviations of 0.5°, 0.3°, and 0.4°, respectively. Comparison of saccade trajectories with the likewise predicted fixed-axis rotations yielded mean coefficients of determinations (±SD) of 0.72 (±0.26) for torsion, 0.97 (±0.10) for vertical, and 0.96 (±0.11) for horizontal eye position. Reverse engineering of three-dimensional saccadic rotations based on visual information suggests that motor control of saccades, compatible with Listing's law, not only uses information on the fixation directions at saccade onset and offset but also relies on the computation of secondary reference positions that vary from saccade to saccade.


Subject(s)
Models, Neurological , Saccades/physiology , Vision, Ocular/physiology , Animals , Female , Macaca mulatta
12.
J Neurophysiol ; 106(5): 2151-66, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21715669

ABSTRACT

One of the open questions in oculomotor control of visually guided eye movements is whether it is possible to smoothly track a target along a curvilinear path across the visual field without changing the torsional stance of the eye. We show in an experimental study of three-dimensional eye movements in subhuman primates (Macaca mulatta) that although the pursuit system is able to smoothly change the orbital orientation of the eye's rotation axis, the smooth ocular motion was interrupted every few hundred milliseconds by a small quick phase with amplitude <1.5° while the animal tracked a target along a circle or ellipse. Specifically, during circular pursuit of targets moving at different angular eccentricities (5°, 10°, and 15°) relative to straight ahead at spatial frequencies of 0.067 and 0.1 Hz, the torsional amplitude of the intervening quick phases was typically around 1° or smaller and changed direction for clockwise vs. counterclockwise tracking. Reverse computations of the eye rotation based on the recorded angular eye velocity showed that the quick phases facilitate the overall control of ocular orientation in the roll plane, thereby minimizing torsional disturbances of the visual field. On the basis of a detailed kinematic analysis, we suggest that quick phases during curvilinear smooth tracking serve to minimize deviations from Donders' law, which are inevitable due to the spherical configuration space of smooth eye movements.


Subject(s)
Models, Biological , Oculomotor Muscles/physiology , Pursuit, Smooth/physiology , Torsion, Mechanical , Animals , Biomechanical Phenomena/physiology , Female , Humans , Imaging, Three-Dimensional , Macaca mulatta , Photic Stimulation/methods , Saccades/physiology
13.
ISME J ; 5(2): 231-43, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20686514

ABSTRACT

A distinct subgroup of euglenozoans, referred to as the 'Symbiontida,' has been described from oxygen-depleted and sulfidic marine environments. By definition, all members of this group carry epibionts that are intimately associated with underlying mitochondrion-derived organelles beneath the surface of the hosts. We have used molecular phylogenetic and ultrastructural evidence to identify the rod-shaped epibionts of the two members of this group, Calkinsia aureus and B.bacati, hand-picked from the sediments of two separate oxygen-depleted, sulfidic environments. We identify their epibionts as closely related sulfur or sulfide-oxidizing members of the epsilon proteobacteria. The epsilon proteobacteria generally have a significant role in deep-sea habitats as primary colonizers, primary producers and/or in symbiotic associations. The epibionts likely fulfill a role in detoxifying the immediate surrounding environment for these two different hosts. The nearly identical rod-shaped epibionts on these two symbiontid hosts provides evidence for a co-evolutionary history between these two sets of partners. This hypothesis is supported by congruent tree topologies inferred from 18S and 16S rDNA from the hosts and bacterial epibionts, respectively. The eukaryotic hosts likely serve as a motile substrate that delivers the epibionts to the ideal locations with respect to the oxic/anoxic interface, whereby their growth rates can be maximized, perhaps also allowing the host to cultivate a food source. Because symbiontid isolates and additional small subunit rDNA gene sequences from this clade have now been recovered from many locations worldwide, the Symbiontida are likely more widespread and diverse than presently known.


Subject(s)
Epsilonproteobacteria/classification , Epsilonproteobacteria/physiology , Euglenozoa/microbiology , Geologic Sediments/microbiology , Phylogeny , Symbiosis/physiology , Ecosystem , Epsilonproteobacteria/genetics , Epsilonproteobacteria/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Oxygen/analysis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Seawater/chemistry
14.
J Neurophysiol ; 104(3): 1370-81, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20610780

ABSTRACT

The vestibular organs in the base of the skull provide important information about head orientation and motion in space. Previous studies have suggested that both angular velocity information from the semicircular canals and information about head orientation and translation from the otolith organs are centrally processed in an internal model of head motion, using the principles of optimal estimation. This concept has been successfully applied to model behavioral responses to classical vestibular motion paradigms. This study measured the dynamic of the vestibuloocular reflex during postrotatory tilt, tilt during the optokinetic afternystagmus, and off-vertical axis rotation. The influence of otolith signal on the VOR was systematically varied by using a series of tilt angles. We found that the time constants of responses varied almost identically as a function of gravity in these paradigms. We show that Bayesian modeling could predict the experimental results in an accurate and consistent manner. In contrast to other approaches, the Bayesian model also provides a plausible explanation of why these vestibulooculo motor responses occur as a consequence of an internal process of optimal motion estimation.


Subject(s)
Eye Movements/physiology , Gravitation , Models, Biological , Motion Perception/physiology , Reflex, Vestibulo-Ocular/physiology , Animals , Macaca mulatta , Random Allocation , Reaction Time/physiology , Rotation , Semicircular Canals/physiology
15.
Vision Res ; 50(13): 1203-13, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20359490

ABSTRACT

We present a method for recording eye-head movements with the magnetic search coil technique in a small external magnetic field. Since magnetic fields are typically non-linear, except in a relative small region in the center small field frames have not been used for head-unrestrained experiments in oculomotor studies. Here we present a method for recording 3D eye movements by accounting for the magnetic non-linearities using the Biot-Savart law. We show that the recording errors can be significantly reduced by monitoring current head position and thereby taking the location of the eye in the external magnetic field into account.


Subject(s)
Eye Movements/physiology , Head Movements/physiology , Magnetics , Algorithms , Animals , Equipment Design , Humans , Magnetics/instrumentation , Primates
16.
Prog Brain Res ; 171: 199-206, 2008.
Article in English | MEDLINE | ID: mdl-18718301

ABSTRACT

Visual stabilization of the retina during rotational head movements requires that in far vision the eyes rotate about the same axis as the head but in opposite direction with a gain close to unity (optimal strategy). To achieve this goal the vestibulo-oculomotor system must be able to independently control all three rotational degrees of freedom of the eye. Studies of the human rotational vestibulo-ocular reflexes (VOR) have shown that its spatial characteristics are best explained by a strategy that lies halfway between the optimal image stabilization and perfect compliance with Listing's law. Here we argue that these spatial characteristics are fully compatible with an optimal strategy under the condition of a restrained gain of the torsional velocity-to-position integration. One implication of this finding is that the rotational VORs must override the default operation mode of the ocular plant that, according to recent findings, mechanically favours movements obeying Listing's law.


Subject(s)
Eye Movements/physiology , Head Movements/physiology , Reflex, Vestibulo-Ocular/physiology , Animals , Fixation, Ocular , Humans , Motion Perception/physiology , Oculomotor Muscles/physiology , Rotation , Visual Perception/physiology
17.
Prog Brain Res ; 171: 287-90, 2008.
Article in English | MEDLINE | ID: mdl-18718315

ABSTRACT

During constant-velocity rotation about a tilted axis (OVAR), the VOR and the rotation perception last indefinitely, but show a striking dependency on tilt angle. We show that, during OVAR, a variety of motions can account for the head motion relative to gravity. Some of these are in conflict with canal signals, but correspond to a lower angular velocity; we suggest that the brain performs a trade-off in order to select the best motion. We show that this theory explains the effect of tilt angle on velocity estimation during OVAR.


Subject(s)
Otolithic Membrane/physiology , Reflex, Vestibulo-Ocular/physiology , Semicircular Canals/physiology , Bayes Theorem , Head Movements/physiology , Humans , Models, Neurological , Motion Perception/physiology , Proprioception/physiology , Rotation
18.
J Neurophysiol ; 100(2): 657-69, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18497358

ABSTRACT

We investigated in normal human subjects how semicircular canal and otolith signals interact in the estimation of the subjective visual vertical after constant velocity or constant acceleration roll tilt. In the constant velocity paradigm, subjects were rotated in darkness at +/-60 degrees/s for five complete cycles before being stopped in one of seven orientations ranging from 0 to +/-90 degrees (right/left ear down). In the constant acceleration paradigm, subjects were rotated with an acceleration of +30 or -30 degrees/s2 to the same seven end positions between -90 and +90 degrees , by way of passing once through the upside-down position. The subjective visual vertical was assessed by measuring the setting of a luminous line that appeared at different test delays after stop rotation in otherwise complete darkness. The data suggest that gravitational jerk signals generated by otolith-semicircular canal interactions and/or carried by phasic otolith signals are responsible for the observed transient bias in the estimation of the subjective visual vertical. This transient bias depended on both rotation and tilt direction after constant velocity rotations, but was almost abolished following constant acceleration rotations.


Subject(s)
Nonlinear Dynamics , Orientation/physiology , Otolithic Membrane/physiology , Reflex, Vestibulo-Ocular/physiology , Rotation , Semicircular Canals/physiology , Adult , Analysis of Variance , Gravitation , Humans , Middle Aged , Models, Biological , Motion Perception , Time Factors
19.
J Neurophysiol ; 99(4): 1799-809, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18256164

ABSTRACT

To maintain a stable representation of the visual environment as we move, the brain must update the locations of targets in space using extra-retinal signals. Humans can accurately update after intervening active whole-body translations. But can they also update for passive translations (i.e., without efference copy signals of an outgoing motor command)? We asked six head-fixed subjects to remember the location of a briefly flashed target (five possible targets were located at depths of 23, 33, 43, 63, and 150 cm in front of the cyclopean eye) as they moved 10 cm left, right, up, down, forward, or backward while fixating a head-fixed target at 53 cm. After the movement, the subjects made a saccade to the remembered location of the flash with a combination of version and vergence eye movements. We computed an updating ratio where 0 indicates no updating and 1 indicates perfect updating. For lateral and vertical whole-body motion, where updating performance is judged by the size of the version movement, the updating ratios were similar for leftward and rightward translations, averaging 0.84 +/- 0.28 (mean +/- SD) as compared with 0.51 +/- 0.33 for downward and 1.05 +/- 0.50 for upward translations. For forward/backward movements, where updating performance is judged by the size of the vergence movement, the average updating ratio was 1.12 +/- 0.45. Updating ratios tended to be larger for far targets than near targets, although both intra- and intersubject variabilities were smallest for near targets. Thus in addition to self-generated movements, extra-retinal signals involving otolith and proprioceptive cues can also be used for spatial constancy.


Subject(s)
Motion Perception/physiology , Space Perception/physiology , Visual Perception/physiology , Adult , Calibration , Data Interpretation, Statistical , Eye Movements/physiology , Female , Fixation, Ocular/physiology , Humans , Linear Models , Male , Middle Aged , Photic Stimulation , Saccades/physiology
20.
J Neurophysiol ; 99(1): 96-111, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17989243

ABSTRACT

To investigate the role of noncommutative computations in the oculomotor system, three-dimensional (3D) eye movements were measured in seven healthy subjects using a memory-contingent vestibulooculomotor paradigm. Subjects had to fixate a luminous point target that appeared briefly at an eccentricity of 20 degrees in one of four diagonal directions in otherwise complete darkness. After a fixation period of approximately 1 s, the subject was moved through a sequence of two rotations about mutually orthogonal axes in one of two orders (30 degrees yaw followed by 30 degrees pitch and vice versa in upright and 30 degrees yaw followed by 20 degrees roll and vice versa in both upright and supine orientations). We found that the change in ocular torsion induced by consecutive rotations about the yaw and the pitch axis depended on the order of rotations as predicted by 3D rotation kinematics. Similarly, after rotations about the yaw and roll axis, torsion depended on the order of rotations but now due to the change in final head orientation relative to gravity. Quantitative analyses of these ocular responses revealed that the rotational vestibuloocular reflexes (VORs) in far vision closely matched the predictions of 3D rotation kinematics. We conclude that the brain uses an optimal VOR strategy with the restriction of a reduced torsional position gain. This restriction implies a limited oculomotor range in torsion and systematic tilts of the angular eye velocity as a function of gaze direction.


Subject(s)
Eye Movements/physiology , Fixation, Ocular/physiology , Head Movements/physiology , Orientation/physiology , Reflex, Vestibulo-Ocular/physiology , Vestibule, Labyrinth/physiology , Adult , Algorithms , Biomechanical Phenomena , Computer Simulation , Eye , Female , Humans , Male , Middle Aged , Oculomotor Muscles/innervation , Oculomotor Muscles/physiology , Psychomotor Performance/physiology , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL