Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9444, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658667

ABSTRACT

One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.


Subject(s)
Fibroblasts , Light , Reactive Oxygen Species , Humans , Animals , Fibroblasts/metabolism , Fibroblasts/radiation effects , Fibroblasts/cytology , Mice , Reactive Oxygen Species/metabolism , Cell Survival/radiation effects , Dental Pulp/cytology , Dental Pulp/radiation effects , Osteoblasts/metabolism , Osteoblasts/radiation effects , Osteoblasts/cytology , Cells, Cultured , Cell Line , Stem Cells/metabolism , Stem Cells/radiation effects , Stem Cells/cytology , Glutathione/metabolism
2.
Mater Today Bio ; 25: 101006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445011

ABSTRACT

Bone remodelling, important for homeostasis and regeneration involves the controlled action of osteoblasts, osteocytes and osteoclasts. The present study established a three-dimensional human in vitro bone model as triple culture with simultaneously differentiating osteocytes and osteoclasts, in the presence of osteoblasts. Since high sulfated hyaluronan (sHA3) was reported as a biomaterial to enhance osteogenesis as well as to dampen osteoclastogenesis, the triple culture was exposed to sHA3 to investigate cellular responses compared to the respective bone cell monocultures. Osteoclast formation and marker expression was stimulated by sHA3 only in triple culture. Osteoprotegerin (OPG) gene expression and protein secretion, but not receptor activator of NF-κB ligand (RANKL) or sclerostin (SOST), were strongly enhanced, suggesting an important role of sHA3 itself in osteoclastogenesis with other targets than indirect modulation of the RANKL/OPG ratio. Furthermore, sHA3 upregulated osteocalcin (BGLAP) in osteocytes and osteoblasts in triple culture, while alkaline phosphatase (ALP) was downregulated.

3.
Biomater Adv ; 156: 213708, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029698

ABSTRACT

Tissue engineering of ligaments and tendons aims to reproduce the complex and hierarchical tissue structure while meeting the biomechanical and biological requirements. For the first time, the additive manufacturing methods of embroidery technology and melt electrowriting (MEW) were combined to mimic these properties closely. The mechanical benefits of embroidered structures were paired with a superficial micro-scale structure to provide a guide pattern for directional cell growth. An evaluation of several previously reported MEW fiber architectures was performed. The designs with the highest cell orientation of primary dermal fibroblasts were then applied to embroidery structures and subsequently evaluated using human adipose-derived stem cells (AT-MSC). The addition of MEW fibers resulted in the formation of a mechanically robust layer on the embroidered scaffolds, leading to composite structures with mechanical properties comparable to those of the anterior cruciate ligament. Furthermore, the combination of embroidered and MEW structures supports a higher cell orientation of AT-MSC compared to embroidered structures alone. Collagen coating further promoted cell attachment. Thus, these investigations provide a sound basis for the fabrication of heterogeneous and hierarchical synthetic tendon and ligament substitutes.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Collagen/chemistry , Anterior Cruciate Ligament , Tendons
4.
Bioengineering (Basel) ; 10(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37892933

ABSTRACT

In this study, the in vitro and in vivo bone formation behavior of mesoporous bioactive glass (MBG) particles incorporated in a pasty strontium-containing calcium phosphate bone cement (pS100G10) was studied in a metaphyseal fracture-defect model in ovariectomized rats and compared to a plain pasty strontium-containing calcium phosphate bone cement (pS100) and control (empty defect) group, respectively. In vitro testing showed good cytocompatibility on human preosteoblasts and ongoing dissolution of the MBG component. Neither the released strontium nor the BMG particles from the pS100G10 had a negative influence on cell viability. Forty-five female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) pS100 (n = 15), (2) pS100G10 (n = 15), and (3) empty defect (n = 15). Twelve weeks after bilateral ovariectomy and multi-deficient diet, a 4 mm wedge-shaped fracture-defect was created at the metaphyseal area of the left femur in all animals. The originated fracture-defect was substituted with pS100 or pS100G10 or left empty. After six weeks, histomorphometrical analysis revealed a statistically significant higher bone volume/tissue volume ratio in the pS100G10 group compared to the pS100 (p = 0.03) and empty defect groups (p = 0.0001), indicating enhanced osteoconductivity with the incorporation of MBG. Immunohistochemistry revealed a significant decrease in the RANKL/OPG ratio for pS100 (p = 0.004) and pS100G10 (p = 0.003) compared to the empty defect group. pS100G10 showed a statistically higher expression of BMP-2. In addition, a statistically significant higher gene expression of alkaline phosphatase, osteoprotegerin, collagen1a1, collagen10a1 with a simultaneous decrease in RANKL, and carbonic anhydrase was seen in the pS100 and pS100G10 groups compared to the empty defect group. Mass spectrometric imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the release of Sr2+ ions from both pS100 and pS100G10, with a gradient into the interface region. ToF-SIMS imaging also revealed that resorption of the MBG particles allowed for new bone formation in cement pores. In summary, the current work shows better bone formation of the injectable pasty strontium-containing calcium phosphate bone cement with incorporated mesoporous bioactive glass compared to the bioactive-free bone cement and empty defects and can be considered for clinical application for osteopenic fracture defects in the future.

5.
Acta Biomater ; 170: 124-141, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37696412

ABSTRACT

The three additive manufacturing techniques fused deposition modeling, gel plotting and melt electrowriting were combined to develop a mimicry of the tympanic membrane (TM) to tackle large TM perforations caused by chronic otitis media. The mimicry of the collagen fiber orientation of the TM was accompanied by a study of multiple funnel-shaped mimics of the TM morphology, resulting in mechanical and acoustic properties similar to those of the eardrum. For the different 3D printing techniques used, the process parameters were optimized to allow reasonable microfiber arrangements within the melt electrowriting setup. Interestingly, the fiber pattern was less important for the acousto-mechanical properties than the overall morphology. Furthermore, the behavior of keratinocytes and fibroblasts is crucial for the repair of the TM, and an in vitro study showed a high biocompatibility of both primary cell types while mimicking the respective cell layers of the TM. A simulation of the in vivo ingrowth of both cell types resulted in a cell growth orientation similar to the original collagen fiber orientation of the TM. Overall, the combined approach showed all the necessary parameters to support the growth of a neo-epithelial layer with a similar structure and morphology to the original membrane. It therefore offers a suitable alternative to autologous materials for the treatment of chronic otitis media. STATEMENT OF SIGNIFICANCE: Millions of people worldwide suffer from chronic middle ear infections. Although the tympanic membrane (TM) can be reconstructed with autologous materials, the grafts used for this purpose require extensive manual preparation during surgery. This affects not only the hearing ability but also the stability of the reconstructed TM, especially in the case of full TM reconstruction. The synthetic alternative presented here mimicked not only the fibrous structure of the TM but also its morphology, resulting in similar acousto-mechanical properties. Furthermore, its high biocompatibility supported the migration of keratinocytes and fibroblasts to form a neo-epithelial layer. Overall, this completely new TM replacement was achieved by combining three different additive manufacturing processes.

6.
J Funct Biomater ; 14(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37367281

ABSTRACT

Biopolymer hydrogels have become an important group of biomaterials in experimental and clinical use. However, unlike metallic or mineral materials, they are quite sensitive to sterilization. The aim of this study was to compare the effects of gamma irradiation and supercritical carbon dioxide (scCO2) treatment on the physicochemical properties of different hyaluronan (HA)- and/or gelatin (GEL)-based hydrogels and the cellular response of human bone marrow-derived mesenchymal stem cells (hBMSC). Hydrogels were photo-polymerized from methacrylated HA, methacrylated GEL, or a mixture of GEL/HA. The composition and sterilization methods altered the dissolution behavior of the biopolymeric hydrogels. There were no significant differences in methacrylated GEL release but increased methacrylated HA degradation of gamma-irradiated samples. Pore size/form remained unchanged, while gamma irradiation decreased the elastic modulus from about 29 kPa to 19 kPa compared to aseptic samples. HBMSC proliferated and increased alkaline phosphatase activity (ALP) particularly in aseptic and gamma-irradiated methacrylated GEL/HA hydrogels alike, while scCO2 treatment had a negative effect on both proliferation and osteogenic differentiation. Thus, gamma-irradiated methacrylated GEL/HA hydrogels are a promising base for multi-component bone substitute materials.

7.
Polymers (Basel) ; 15(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36987248

ABSTRACT

Due to affordability, and the ability to parametrically control the vital processing parameters, material extrusion is a widely accepted technology in tissue engineering. Material extrusion offers sufficient control over pore size, geometry, and spatial distribution, and can also yield different levels of in-process crystallinity in the resulting matrix. In this study, an empirical model based on four process parameters-extruder temperature, extrusion speed, layer thickness, and build plate temperature-was used to control the level of in-process crystallinity of polylactic acid (PLA) scaffolds. Two sets of scaffolds were fabricated, with low- and high-crystallinity content, and subsequently seeded with human mesenchymal stromal cells (hMSC). The biochemical activity of hMSC cells was tested by examining the DNA content, lactate dehydrogenase (LDH) activity, and alkaline phosphatase (ALP) tests. The results of this 21-day in vitro experiment showed that high level crystallinity scaffolds performed significantly better in terms of cell response. Follow-up tests revealed that the two types of scaffolds were equivalent in terms of hydrophobicity, and module of elasticity. However, detailed examination of their micro- and nanosurface topographic features revealed that the higher crystallinity scaffolds featured pronounced nonuniformity and a larger number of summits per sampling area, which was the main contributor to a significantly better cell response.

8.
Front Bioeng Biotechnol ; 10: 994134, 2022.
Article in English | MEDLINE | ID: mdl-36199362

ABSTRACT

Preventing hypoxic zones in 3D bioprinted mammalian cell-laden constructs using an internal oxygen supply could enable a more successful cultivation both in vitro and in vivo. In this study, the suitability of green microalgae as photosynthetic oxygen generators within bioprinted constructs was evaluated by defining and investigating important parameters for a successful co-culture. First, we assessed the impact of light-necessary for photosynthesis-on two non-light adapted mammalian cell types and defined red-light illumination and a temperature of 37°C as essential factors in a co-culture. The four thermotolerant microalgae strains Chlorella sorokiniana, Coelastrella oocystiformis, Coelastrella striolata, and Scenedesmus sp. were cultured both in suspension culture and 3D bioprinted constructs to assess viability and photosynthetic activity under these defined co-culture conditions. Scenedesmus sp. proved to be performing best under red light and 37°C as well as immobilized in a bioprinted hydrogel based on alginate. Moreover, the presence of the antibiotic ampicillin and the organic carbon-source glucose, both required for mammalian cell cultures, had no impact on bioprinted Scenedesmus sp. cultures regarding growth, viability, and photosynthetic activity. This study is the first to investigate the influence of mammalian cell requirements on the metabolism and photosynthetic ability of different microalgal strains. In a co-culture, the strain Scenedesmus sp. could provide a stable oxygenation that ensures the functionality of the mammalian cells.

9.
Acta Biomater ; 149: 373-386, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35817340

ABSTRACT

Increasing research has incorporated bioactive glass nanoparticles (BGN) and electric field (EF) stimulation for bone tissue engineering and regeneration applications. However, their interplay and the effects of different EF stimulation regimes on osteogenic differentiation of human mesenchymal stem cells (hMSC) are less investigated. In this study, we introduced EF with negligible magnetic field strength through a well-characterized transformer-like coupling (TLC) system, and applied EF disrupted (4/4) or consecutive (12/12) regime on type I collagen (Col) coatings with/without BGN over 28 days. Additionally, dexamethasone was excluded to enable an accurate interpretation of BGN and EF in supporting osteogenic differentiation. Here, we demonstrated the influences of BGN and EF on collagen topography and maintaining coating stability. Coupled with the release profile of Si ions from the BGN, cell proliferation and calcium deposition were enhanced in the Col-BGN samples after 28 days. Further, osteogenic differentiation was initiated as early as d 7, and each EF regime was shown to activate distinct pathways. The disrupted (4/4) regime was associated with the BMP/Smad4 pathways that up-regulate Runx2/OCN gene expression on d 7, with a lesser effect on ALP activity. In contrast, the canonical Wnt/ß-Catenin signaling pathway activated through mechanotransduction cues is associated with the consecutive (12/12) regime, with significantly elevated ALP activity and Sp7 gene expression reported on d 7. In summary, our results illustrated the synergistic effects of BGN and EF in different stimulation regimes on osteogenic differentiation that can be further exploited to enhance current bone tissue engineering and regeneration approaches. STATEMENT OF SIGNIFICANCE: The unique release mechanisms of silica from bioactive glass nanoparticles (BGN) were coupled with pulsatile electric field (EF) stimulation to support hMSC osteogenic differentiation, in the absence of dexamethasone. Furthermore, the interplay with consecutive (12/12) and disrupted (4/4) stimulation regimes was investigated. The reported physical, mechanical and topographical effects of BGN and EF on the collagen coating, hMSC and the distinct progression of osteogenic differentiation (canonical Wnt/ß-Catenin and BMP/Smad) triggered by respective stimulation regime were not explicitly reported previously. These results provide the fundamentals for further exploitations on BGN composites with metal ions and rotation of EF regimes to enhance osteogenic differentiation. The goal is sustaining continual osteogenic differentiation and achieving a more physiologically-relevant state and bone constructs in vitro.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Cell Differentiation , Cells, Cultured , Collagen/pharmacology , Dexamethasone/pharmacology , Electric Stimulation , Humans , Mechanotransduction, Cellular , Osteogenesis
10.
Eur J Cell Biol ; 101(3): 151256, 2022.
Article in English | MEDLINE | ID: mdl-35839696

ABSTRACT

An in vitro bone triple culture involving human primary osteoblasts, osteocytes and osteoclasts enables the investigation of bone healing factors, drugs or biomaterials in a model system for native bone tissue. The present study analyses the impact of Sr2+ as well as hypoxic cultivation (5% O2 content or chemically induced by Co2+) on bone cells. The three cell types were cultivated together in the presence of 100 µM Sr2+, hypoxic conditions or in the presence of 75 µM Co2+. After cultivation the cell types were separated and analysed on mRNA and protein level individually. In response to Sr2+ osteoblasts showed a downregulation of IBSP expression and a stimulation of ALP activity. Osteocyte gene marker expression of PDPN, MEPE, RANKL, OPG, osteocalcin and likewise the amount of secreted osteocalcin was reduced in the presence of Sr2+. Activity of osteoclast-specific enzymes TRAP and CAII was enhanced compared to the Sr2+ free control. Hypoxic conditions induced by both 5% O2 or a Co2+ treatment led to decreased DNA content of all bone cells and downregulated expression of osteoblast markers ALPL and IBSP as well as osteocyte markers PDPN, RANKL and OPG. In addition, Co2+ induced hypoxia decreased gene and protein expression of osteocalcin in osteocytes. In response to the Co2+ treatment, the TRAP gene expression and activity was increased. This study is the first to analyse the effects of Sr2+ or hypoxia on triple cultures with primary human bone cells. The investigated in vitro bone model might be suitable to reduce animal experiments in early stages of biomaterial and drug development.


Subject(s)
Osteoclasts , Osteocytes , Animals , Cell Differentiation , Gene Expression Regulation , Humans , Hypoxia/metabolism , Osteoblasts , Osteocalcin/genetics , Osteocalcin/metabolism , Osteocalcin/pharmacology , Osteoclasts/metabolism , Osteocytes/metabolism
11.
Biomater Adv ; 134: 112692, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35581081

ABSTRACT

In vitro triple cultures of human primary osteoblasts, osteocytes and osteoclasts can potentially help to analyze the effect of drugs and degradation products of biomaterials as a model for native bone tissue. In the present study, degradation products of Magnesium (Mg), which has been successfully applied in the biomedical field, were studied with respect to their impact on bone cell morphology and differentiation both in osteocyte single cultures and in the triple culture model. Fluorescence microscopic and gene expression analysis, analysis of osteoclast- and osteoblast-specific enzyme activities as well as osteocalcin protein expression were performed separately for the three cell types after cultivation in triple culture in the presence of extracts, containing 5 and 10 mM Mg2+. All three cell species were viable in the presence of the extracts and did not show morphological changes compared to the Mg-free control. Osteoblasts and osteoclasts did not show significant changes in gene expression of ALPL, BSPII, osteocalcin, TRAP, CTSK and CA2. Likewise on protein level, no significant changes in ALP-, TRAP-, CTSK- and CAII activities were detected. Osteocytes showed a significant downregulation of MEPE, which codes for a protein playing an important role in regulation of phosphate homeostasis by osteocytes. This study is the first to analyze the effects of Mg degradation products on primary osteocytes in vitro, both in single and triple culture. Even if promoting effects on the three examined bone cell species were not found in the applied triple culture setup, it was shown, that Mg degradation products do not interfere with the activity of osteoblasts, osteoclasts and osteocytes in vitro.


Subject(s)
Magnesium , Osteocytes , Cells, Cultured , Humans , Magnesium/pharmacology , Osteoblasts , Osteocalcin/genetics , Osteoclasts
12.
Biofabrication ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-34933296

ABSTRACT

One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-ß3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-ß3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.


Subject(s)
Bioprinting , Bioprinting/methods , Cell Differentiation , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Transforming Growth Factor beta3/pharmacology
13.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884623

ABSTRACT

The present study analyzes the capacity of collagen (coll)/sulfated glycosaminoglycan (sGAG)-based surface coatings containing bioactive glass nanoparticles (BGN) in promoting the osteogenic differentiation of human mesenchymal stroma cells (hMSC). Physicochemical characteristics of these coatings and their effects on proliferation and osteogenic differentiation of hMSC were investigated. BGN were stably incorporated into the artificial extracellular matrices (aECM). Oscillatory rheology showed predominantly elastic, gel-like properties of the coatings. The complex viscosity increased depending on the GAG component and was further elevated by adding BGN. BGN-containing aECM showed a release of silicon ions as well as an uptake of calcium ions. hMSC were able to proliferate on coll and coll/sGAG coatings, while cellular growth was delayed on aECM containing BGN. However, a stimulating effect of BGN on ALP activity and calcium deposition was shown. Furthermore, a synergistic effect of sGAG and BGN was found for some donors. Our findings demonstrated the promising potential of aECM and BGN combinations in promoting bone regeneration. Still, future work is required to further optimize the BGN/aECM combination for increasing its combined osteogenic effect.


Subject(s)
Cell Differentiation , Extracellular Matrix/chemistry , Glass/chemistry , Mesenchymal Stem Cells/cytology , Nanoparticles/administration & dosage , Osteogenesis , Cell Proliferation , Cells, Cultured , Collagen/chemistry , Glycosaminoglycans/chemistry , Humans , Mesenchymal Stem Cells/drug effects , Nanoparticles/chemistry
14.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502249

ABSTRACT

The replacement of damaged or degenerated articular cartilage tissue remains a challenge, as this non-vascularized tissue has a very limited self-healing capacity. Therefore, tissue engineering (TE) of cartilage is a promising treatment option. Although significant progress has been made in recent years, there is still a lack of scaffolds that ensure the formation of functional cartilage tissue while meeting the mechanical requirements for chondrogenic TE. In this article, we report the application of flock technology, a common process in the modern textile industry, to produce flock scaffolds made of chitosan (a biodegradable and biocompatible biopolymer) for chondrogenic TE. By combining an alginate hydrogel with a chitosan flock scaffold (CFS+ALG), a fiber-reinforced hydrogel with anisotropic properties was developed to support chondrogenic differentiation of embedded human chondrocytes. Pure alginate hydrogels (ALG) and pure chitosan flock scaffolds (CFS) were studied as controls. Morphology of primary human chondrocytes analyzed by cLSM and SEM showed a round, chondrogenic phenotype in CFS+ALG and ALG after 21 days of differentiation, whereas chondrocytes on CFS formed spheroids. The compressive strength of CFS+ALG was higher than the compressive strength of ALG and CFS alone. Chondrocytes embedded in CFS+ALG showed gene expression of chondrogenic markers (COL II, COMP, ACAN), the highest collagen II/I ratio, and production of the typical extracellular matrix such as sGAG and collagen II. The combination of alginate hydrogel with chitosan flock scaffolds resulted in a scaffold with anisotropic structure, good mechanical properties, elasticity, and porosity that supported chondrogenic differentiation of inserted human chondrocytes and expression of chondrogenic markers and typical extracellular matrix.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Aggrecans/genetics , Aggrecans/metabolism , Anisotropy , Cartilage Oligomeric Matrix Protein/genetics , Cartilage Oligomeric Matrix Protein/metabolism , Cell Differentiation , Cell Proliferation , Chondrocytes/metabolism , Chondrogenesis , Collagen/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Compressive Strength , Female , Glycosaminoglycans/metabolism , Humans , Male , Middle Aged , Primary Cell Culture , Static Electricity
15.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298935

ABSTRACT

In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.


Subject(s)
Bone and Bones/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteocytes/metabolism , Aged , Cell Differentiation/genetics , Cells, Cultured , Coculture Techniques , Collagen/metabolism , Down-Regulation/genetics , Female , Gene Expression/genetics , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Up-Regulation/genetics
16.
Materials (Basel) ; 14(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807758

ABSTRACT

Bioactive glasses have been used for bone regeneration applications thanks to their excellent osteoconductivity, an osteostimulatory effect, and high degradation rate, releasing biologically active ions. Besides these properties, mesoporous bioactive glasses (MBG) are specific for their highly ordered mesoporous channel structure and high specific surface area, making them suitable for drug and growth factor delivery. In the present study, calcium (Ca) (15 mol%) in MBG was partially and fully substituted with zinc (Zn), known for its osteogenic and antimicrobial properties. Different MBG were synthesized, containing 0, 5, 10, or 15 mol% of Zn. Up to 7 wt.% of Zn-containing MBG could be mixed into an alginate-methylcellulose blend (algMC) while maintaining rheological properties suitable for 3D printing of scaffolds with sufficient shape fidelity. The suitability of these composites for bioprinting applications has been demonstrated with immortalized human mesenchymal stem cells. Uptake of Ca and phosphorus (P) (phosphate) ions by composite scaffolds was observed, while the released concentration of Zn2+ corresponded to the initial amount of this ion in prepared glasses, suggesting that it can be controlled at the MBG synthesis step. The study introduces a tailorable bioprintable material system suitable for bone tissue engineering applications.

17.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671069

ABSTRACT

BACKGROUND: Copper-containing biomaterials are increasingly applied for bone regeneration due to their pro-angiogenetic, pro-osteogenetic and antimicrobial properties. Therefore, the effect of Cu2+ on osteoclasts, which play a major role in bone remodeling was studied in detail. METHODS: Human primary osteoclasts, differentiated from human monocytes were differentiated or cultivated in the presence of Cu2+. Osteoclast formation and activity were analyzed by measurement of osteoclast-specific enzyme activities, gene expression analysis and resorption assays. Furthermore, the glutathione levels of the cells were checked to evaluate oxidative stress induced by Cu2+. RESULTS: Up to 8 µM Cu2+ did not induce cytotoxic effects. Activity of tartrate-resistant acid phosphatase (TRAP) was significantly increased, while other osteoclast specific enzyme activities were not affected. However, gene expression of TRAP was not upregulated. Resorptive activity of osteoclasts towards dentin was not changed in the presence of 8 µM Cu2+ but decreased in the presence of extracellular bone matrix. When Cu2+ was added to mature osteoclasts TRAP activity was not increased and resorption decreased only moderately. The glutathione level of both differentiating and mature osteoclasts was significantly decreased in the presence of Cu2+. CONCLUSIONS: Differentiating and mature osteoclasts react differently to Cu2+. High TRAP activities are not necessarily related to high resorption.


Subject(s)
Bone Remodeling/drug effects , Bone Resorption , Copper/pharmacology , Leukocytes, Mononuclear/cytology , Osteoclasts/cytology , Animals , Cell Differentiation , Cells, Cultured , Dentin/metabolism , Gene Expression Regulation , Humans , In Vitro Techniques , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Swine , Tartrate-Resistant Acid Phosphatase/metabolism
18.
Adv Healthc Mater ; 10(10): e2002089, 2021 05.
Article in English | MEDLINE | ID: mdl-33506636

ABSTRACT

The tympanic membrane (TM) transfers sound waves from the air into mechanical motion for the ossicular chain. This requires a high sensitivity to small dynamic pressure changes and resistance to large quasi-static pressure differences. The TM achieves this by providing a layered structure of about 100µm in thickness, a low flexural stiffness, and a high tensile strength. Chronically infected middle ears require reconstruction of a large area of the TM. However, current clinical treatment can cause a reduction in hearing. With the novel additive manufacturing technique of melt electrowriting (MEW), it is for the first time possible to fabricate highly organized and biodegradable membranes within the dimensions of the TM. Scaffold designs of various fiber composition are analyzed mechanically and acoustically. It can be demonstrated that by customizing fiber orientation, fiber diameter, and number of layers the desired properties of the TM can be met. An applied thin collagen layer seals the micropores of the MEW-printed membrane while keeping the favorable mechanical and acoustical characteristics. The determined properties are beneficial for implantation, closely match those of the human TM, and support the growth of a neo-epithelial layer. This proves the possibilities to create a biomimimetic TM replacement using MEW.


Subject(s)
Biomimetics , Tympanic Membrane , Collagen , Humans , Motion , Tensile Strength
19.
Front Bioeng Biotechnol ; 9: 767256, 2021.
Article in English | MEDLINE | ID: mdl-35087798

ABSTRACT

Besides osteoconductivity and a high degradation rate, mesoporous bioactive glasses (MBGs) are specific for their highly ordered channel structure and high specific surface area, making them suitable as drug and/or growth factor delivery systems. On the other hand, the mesoporous channel structure and MBG composition can have an effect on common cell evaluation assays, leading to inconclusive results. This effect is especially important when MBG is mixed in composite bioinks, together with cells. Additionally, the hydrogel component of the ink can influence the degradation of MBG, leading to different ion releases, which can additionally affect the analyses. Hence, our aim here was to show how the MBG structure and composition influence common cell viability and differentiation assays when calcium (Ca)- or magnesium (Mg)-containing glass is part of an alginate-based composite bioink. We suggested pre-labeling of cells with DiI prior to bioprinting and staining with calcein-AM to allow identification of metabolically active cells expressing signals in both green and red channels, allowing the use of fluorescence imaging for cell viability evaluations in the presence of high amounts (7 wt %) of MBGs. The release and uptake of ions during degradation of CaMBG and MgMBG were significantly changed by alginate in the composite bioinks, as confirmed by higher release and uptake from bulk glasses. Additionally, we detected a burst release of Mg2+ from composites only after 24 h of incubation. Furthermore, we demonstrated that released ions and the mesoporous channel structure affect the measurement of lactate dehydrogenase (LDH) and alkaline phosphatase activity (ALP) in bioprinted composite scaffolds. Measured LDH activity was significantly decreased in the presence of CaMBG. On the other hand, the presence of MgMBG induced increased signal measured for the ALP. Taken together, our findings show how composite bioinks containing MBGs can interfere with common analyses, obtaining misleading results.

20.
Mater Sci Eng C Mater Biol Appl ; 119: 111631, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321670

ABSTRACT

Customized osteosynthesis materials of titanium alloy can be generated by additive manufacturing replacing the complex adaptation to the patient individual anatomy, especially to the lower jaw bone which shows a highly individual surface area. After printing further conditioning is necessary to adjust surface roughness. The aim of the present study was to analyse the effect of different grinding and polishing procedures on sample surface and composition and in vitro biocompatibility. Ti-6Al-4V ELI samples printed by laser powder bed fusion (LPBF) were post-treated by multi-level procedures to adjust surface roughness using the surface conditioning technologies sandblasting, vibratory finishing, electro polishing or plasma polishing. Topography and chemical composition of the surfaces was analysed. Furthermore, the release of metal ions in contact to cell culture medium was quantified. Human osteoblasts as well as primary human gingiva cells (fibroblasts and epithelial cells) were cultivated in extracts or directly on the surfaces to analyse cytotoxicity, cell adhesion and cell proliferation. Surface roughness of the different materials after final polishing was in between 0.2 and 0.5 µm, which is in the same range as usually found for conventional titanium materials used in maxillofacial surgery. Furthermore, the wettability was comparable for all post-processing techniques. The chemical compositions of the finished surfaces showed a remarkable impact by the applied finishing technique. Extracts of the samples showed low cytotoxicity with exception of the plasma polished samples, which were shown to release significantly higher amounts of vanadium ions. Accordingly, cells showed good adhesion and proliferation on all samples except plasma polished specimens. Customized devices for midline osseodistraction were exemplarily printed with LPBF starting with patient's 3D data. Those devices can be considered for clinical use, since the printed and finished material meets the requirements of ISO 10993-5 for medical devices.


Subject(s)
Prostheses and Implants , Titanium , Alloys , Humans , Materials Testing , Osteoblasts , Surface Properties , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...