Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 10(8)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36016198

ABSTRACT

New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established. Cell culture-derived influenza virus H1N1/A/PR/8/34 was harvested from benchtop bioreactor cultures. For the clarification of the cell culture broth, a depth filtration was selected as an alternative to centrifugation. After inactivation, an anion exchange chromatography membrane was used for viral capture and further processing. Additionally, two pandemic influenza virus strains, the H7N9 subtype of the A/Anhui/1/2013 and H3N2/A/Hong Kong/8/64, were successfully processed through similar downstream process steps establishing optimized process parameters. Overall, 41.3-62.5% viral recovery was achieved, with the removal of 86.3-96.5% host cell DNA and 95.5-99.7% of proteins. The proposed membrane chromatography purification is a scalable and generic method for the processing of different influenza strains and is a promising alternative to the current industrial purification of influenza vaccines based on ultracentrifugation methodologies.

2.
Vaccines (Basel) ; 9(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34696262

ABSTRACT

Gag-based virus-like particles (VLPs) have high potential as scaffolds for the development of chimeric vaccines and delivery strategies. The production of purified preparations that can be preserved independently from cold chains is highly desirable to facilitate distribution and access worldwide. In this work, a nimble purification has been developed, facilitating the production of Gag VLPs. Suspension-adapted HEK 293 cells cultured in chemically defined cell culture media were used to produce the VLPs. A four-step downstream process (DSP) consisting of membrane filtration, ion-exchange chromatography, polishing, and lyophilization was developed. The purification of VLPs from other contaminants such as host cell proteins (HCP), double-stranded DNA, or extracellular vesicles (EVs) was confirmed after their DSP. A concentration of 2.2 ± 0.8 × 109 VLPs/mL in the lyophilized samples was obtained after its storage at room temperature for two months. Morphology and structural integrity of purified VLPs was assessed by cryo-TEM and NTA. Likewise, the purification methodologies proposed here could be easily scaled up and applied to purify similar enveloped viruses and vesicles.

3.
Hum Gene Ther ; 32(21-22): 1390-1402, 2021 11.
Article in English | MEDLINE | ID: mdl-33860673

ABSTRACT

The development of various manufacturing platforms and analytical technologies has substantially contributed to successfully translating the recombinant adeno-associated viral vector from the laboratory to the clinic. The active deployment of these analytical technologies for process and product characterization has helped define critical quality attributes and improve the quality of the clinical grade material. In this article, we report an anion exchange high-performance liquid chromatography (AEX-HPLC) method for relative and as well as absolute quantification of empty capsids (EC) and capsids encapsidating genetic material (CG) in purified preparations of adeno-associated virus (AAV) using serotype 5 as a model. The selection of optimal chromatographic buffer composition and step-gradient elution protocol offered baseline separation of EC and CG in the form of two peaks, as validated with the respective reference standards. The native amino acid fluorescence-based detection offered excellent linearity with a correlation coefficient of 0.9983 over two-log dilutions of the sample. The limit of detection and limit of quantification values associated with the total AAV5 capsid assay are 3.1E + 09 and 9.5E + 09, respectively. AEX-HPLC showed method comparability with the analytical ultracentrifugation (AUC) method for determination of relative proportions of EC and CG, supporting the reported HPLC method as an easy-to-access alternative to AUC with operational simplicity. Moreover, rapid and easy adaptation of this method to AAV8 material also demonstrated the robustness of the proposed approach.


Subject(s)
Capsid , Dependovirus , Anions , Chromatography, High Pressure Liquid , Dependovirus/genetics , Genetic Vectors/genetics , Serogroup
4.
Mol Ther Methods Clin Dev ; 21: 341-356, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33898632

ABSTRACT

Removal of empty capsids from adeno-associated virus (AAV) manufacturing lots remains a critical step in the downstream processing of AAV clinical-grade batches. Because of similar physico-chemical characteristics, the AAV capsid populations totally lacking or containing partial viral DNA are difficult to separate from the desired vector capsid populations. Based on minute differences in density, ultracentrifugation remains the most effective separation method and has been extensively used at small scale but has limitations associated with availabilities and operational complexities in large-scale processing. In this paper, we report a scalable, robust, and versatile anion-exchange chromatography (AEX) method for removing empty capsids and subsequent enrichment of vectors of AAV serotypes 5, 6, 8, and 9. On average, AEX resulted in about 9-fold enrichment of AAV5 in a single step containing 80% ± 5% genome-containing vector capsids, as verified and quantified by analytical ultracentrifugation. The optimized process was further validated using AAV6, AAV8, and AAV9, resulting in over 90% vector enrichment. The AEX process showed comparable results not only for vectors with different transgenes of different sizes but also for AEX runs under different geometries of chromatographic media. The herein-reported sulfate-salt-based AEX process can be adapted to different AAV serotypes by appropriately adjusting elution conditions to achieve enriched vector preparations.

5.
Vaccines (Basel) ; 8(2)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604755

ABSTRACT

Developing vaccine technology platforms to respond to pandemic threats or zoonotic diseases is a worldwide high priority. The risk of infectious diseases transmitted from wildlife and domestic animals to humans makes veterinary vaccination and animal health monitoring highly relevant for the deployment of public health global policies in the context of "one world, one health" principles. Sub-Saharan Africa is frequently impacted by outbreaks of poultry diseases such as avian influenza and Newcastle Disease (ND). Here, an adenovirus-vectored vaccine technology platform is proposed for rapid adaptation to ND or other avian viral threats in the region. Ethiopian isolates of the Newcastle Disease virus (NDV) were subjected to sequence and phylogenetic analyses, enabling the construction of antigenically matched vaccine candidates expressing the fusion (F) and hemagglutinin-neuraminidase (HN) proteins. A cost-effective vaccine production process was developed using HEK293 cells in suspension and serum-free medium. Productive infection in bioreactors (1-3L) at 2 × 106 cells/mL resulted in consistent infectious adenoviral vector titers of approximately 5-6 × 108 TCID50/mL (approximately 1011VP/mL) in the harvest lysates. Groups of chickens were twice immunized with 1 × 1010 TCID50 of the vectors, and full protection against a lethal NDV challenge was provided by the vector expressing the F antigen. These results consolidate the basis for a streamlined and scalable-vectored vaccine manufacturing process for deployment in low- and medium-income countries.

6.
Hum Gene Ther Methods ; 28(6): 330-339, 2017 12.
Article in English | MEDLINE | ID: mdl-28826344

ABSTRACT

Lentiviral vectors (LV) represent a key tool for gene and cell therapy applications. The production of these vectors in sufficient quantities for clinical applications remains a hurdle, prompting the field toward developing suspension processes that are conducive to large-scale production. This study describes a LV production strategy using a stable inducible producer cell line. The HEK293 cell line employed grows in suspension, thus offering direct scalability, and produces a green fluorescent protein (GFP)-expressing lentiviral vector in the 106 transduction units (TU)/mL range without optimization. The stable producer cell line, called clone 92, was derived by stable transfection from a packaging cell line with a plasmid encoding the transgene GFP. The packaging cell line expresses all the other necessary components to produce LV upon induction with cumate and doxycycline. First, the study demonstrated that LV production using clone 92 is scalable from 20 mL shake flasks to 3 L bioreactors. Next, two strategies were developed for high-yield LV production in perfusion mode using acoustic cell filter technology in 1-3 L bioreactors. The first approach uses a basal commercial medium and perfusion mode both pre- and post-induction for increasing cell density and LV recovery. The second approach makes use of a fortified medium formulation to achieve target cell density for induction in batch mode, followed by perfusion mode after induction. Using these perfusion-based strategies, the titer was improved to 3.2 × 107 TU/mL. As a result, cumulative functional LV titers were increased by up to 15-fold compared to batch mode, reaching a cumulative total yield of 8 × 1010 TU/L of bioreactor culture. This approach is easily amenable to large-scale production and commercial manufacturing.


Subject(s)
Biotechnology/methods , Cell Culture Techniques/methods , Genetic Vectors/genetics , Lentivirus/physiology , Transduction, Genetic/methods , Virus Cultivation/methods , Benzoates/pharmacology , Bioreactors , Doxycycline/pharmacology , HEK293 Cells , Humans , Lentivirus/drug effects , Lentivirus/genetics
7.
Vaccine ; 34(29): 3381-7, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27154390

ABSTRACT

Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials.


Subject(s)
Adenoviridae , Cell Culture Techniques , Tuberculosis Vaccines/biosynthesis , Acyltransferases/immunology , Animals , Antibodies, Bacterial/blood , Antibody Formation , Antigens, Bacterial/immunology , Bioreactors , Culture Media, Serum-Free , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/prevention & control
8.
J Virol Methods ; 208: 177-88, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25159033

ABSTRACT

E1-deleted adenovirus vectors (AdV) are important gene transfer vehicles for gene therapy and vaccination. Amplification of AdV must take place in cells that express the adenovirus E1A and E1B genes. Sequence homology between AdV and the E1 genes integrated within the complementing cells should be minimal to reduce the odds of generating replication-competent adenovirus (RCA). The present study describes the establishment of AdV complementing cells constructed by stable transfection of the minimal E1A and E1B genes into human lung carcinoma (A549). Because some transgene products can be cytotoxic, the cells were engineered to stably express the repressor of the cumate-switch (CymR) to silence transgene transcription during vector growth. For regulatory compliance and to facilitate the scale-up, the resulting complementing cells (SF-BMAdR) were adapted to serum-free suspension culture. The best clone of SF-BMAdR produced AdV carrying an innocuous transgene to the same level as 293 cells, but titers were better for AdV carrying transgene for a cytotoxic product. Elevated titers were maintained for at least two months in suspension culture in the absence of selective agent and the cells did not produce RCA. Because of their advantageous properties, SF-BMAdR cells should become an important tool for developing large-scale production processes of AdV for research and clinical applications.


Subject(s)
Adenoviruses, Human/growth & development , Genetic Vectors , Technology, Pharmaceutical/methods , Adenoviruses, Human/genetics , Biotechnology/methods , Cell Line , Culture Media, Serum-Free , Epithelial Cells/physiology , Humans , T-Lymphocytes, Helper-Inducer/physiology , Viral Load , Virus Cultivation/methods
9.
Appl Biochem Biotechnol ; 167(3): 474-88, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22562494

ABSTRACT

Liquid chromatography mass spectrometry (LCMS) is a powerful technique that could serve to rapidly characterize cell culture protein expression profile and be used as a process monitoring and control tool. However, this application is often hampered by both the sample proteome and the LCMS signal complexities as well as the variability of this signal. To alleviate this problem, culture samples are usually extensively fractionated and pretreated before being analyzed by top-end instruments. Such an approach precludes LCMS usage for routine on-line or at-line application. In this work, by applying multivariate analysis (MA) directly on raw LCMS signals, we were able to extract relevant information from cell culture samples that were simply lyzed. By using the recombinant adenovirus production process as a model, we were able to follow the accumulation of the three major proteins produced, identified their accumulation dynamics, and draw useful conclusions from these results. The combination of LCMS and MA provides a simple, rapid, and precise means to monitor cell culture.


Subject(s)
Cell Culture Techniques/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Adenoviridae/genetics , Centrifugation , DNA, Recombinant/genetics , HEK293 Cells , Humans , Multivariate Analysis , Software , Solubility , Time Factors , Virion/metabolism
10.
J Virol Methods ; 165(1): 83-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20116403

ABSTRACT

The preparation of large amount of purified helper-dependent adenoviral vector material is hampered by the lack of development of downstream processes with proven records on separation and recovery efficiencies. In order to facilitate the use of clinical-grade helper-dependent virus material for large-scale in vivo studies, a three-step purification scheme consisting of (1) an anion-exchange chromatography for initial capturing of virus, (2) a shallow iodixanol density gradient ultracentrifugation for the removal of helper virus from helper-dependent virus, and (3) a size-exclusion chromatography for the removal of iodixanol and residual protein contaminants as a polishing step was developed. The use of a fast iodixanol density ultracentrifugation step was highly effective in separating infectious helper-dependent virus from contaminating helper virus. The overall downstream processing scheme gave 80% infectious particle yield. The contamination ratio of helper virus in the helper-dependent virus preparation are reduced from 2.57 to 0.03% corresponding to a reduction of helper virus by factors of 85 by two iodixanol purification steps. It was also demonstrated that size-exclusion chromatography is an excellent step for the removal of iodixanol and polishing of the final helper-dependent virus preparation.


Subject(s)
Adenoviridae/isolation & purification , Genetic Vectors/isolation & purification , Helper Viruses/isolation & purification , Triiodobenzoic Acids , Ultracentrifugation/methods , Virology/methods , Chromatography, Gel/methods , Chromatography, Ion Exchange/methods , Humans
11.
J Pharm Biomed Anal ; 48(3): 598-605, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-18632239

ABSTRACT

Reolysin, a human reovirus type 3, is being evaluated in the clinic as an oncolytic therapy for various types of cancer. To facilitate the optimization and scale-up of the current process, a high performance liquid chromatography (HPLC) method has been developed that is rapid, specific and reliable for the quantification of reovirus type 3 particles. Using an anion-exchange column, the intact virus eluted from the contaminants in 9.78 min at 350 mM NaCl in 50mM HEPES, pH 7.10 in a total analysis time of 25 min. The virus demonstrated a homogenous peak with no co-elution of other compounds as analyzed by photodiode array analysis. The HPLC method facilitated the optimization of the purification process which resulted in the improvement of both total and infectious particle recovery and contributed to the successful scale-up of the process at the 20 L, 40 L and 100 L production scale. The method is suitable for the analysis of crude virus supernatants, crude lysates, semi-purified and purified preparations and therefore is an ideal monitoring tool during process development and scale-up.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mammalian orthoreovirus 3/growth & development , Mammalian orthoreovirus 3/isolation & purification , Cell Line , Humans , Kidney/cytology , Mammalian orthoreovirus 3/ultrastructure , Particle Size , Sensitivity and Specificity , Time Factors
12.
J Virol Methods ; 148(1-2): 106-14, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18079009

ABSTRACT

Helper-dependent adenovirus (HDAd), deleted in all viral protein-coding sequences has been designed to reduce immune response and favor long-term expression of therapeutic genes in clinical programs. Its production requires co-infection of E1-complementing cells with helper adenovirus (HAd). Significant progresses have been made in the molecular design of HDAd, but large scale production remains a challenge. In this work, a scalable system for HDAd production is designed and evaluated focusing on the co-infection step. A human embryo kidney 293 (293) derived cell line, the 293SF/FLPe was generated to produce efficiently HDAd while restricting the packaging of HAd. This cell line was adapted to grow in suspension and in serum-free medium. Multiplicity of infection (MOI) of HDAd ranging from 0.1 to 50 was evaluated in presence of HAd at a MOI of 5. Optimal MOIs for HDAd amplification were found in the range of 5-10. HAd contamination was only 1%. These results were validated in a 3 L bioreactor under controlled operating conditions where a higher HDAd yield of 2.6 x 10(9) viral particles (VP)/mL or 3.5 x 10(8) infectious units (IU)/mL of HDAd was obtained.


Subject(s)
Adenoviridae/growth & development , Virus Cultivation/methods , Adenovirus E1 Proteins/genetics , Cell Count , Cell Line , Cell Survival , Culture Media, Serum-Free , Genetic Vectors , Helper Viruses/physiology , Humans , Transduction, Genetic
13.
Methods Mol Biol ; 388: 281-96, 2007.
Article in English | MEDLINE | ID: mdl-17951776

ABSTRACT

The ability to make a large variety of virus-like particles (VLPs) has been successfully achieved in the baculovirus expression vector system (BEVS)/insect cell system. The production and scale-up of these particles, which are mostly sought as candidate vaccines, are currently being addressed. Furthermore, these VLPs are being investigated as delivery agents for use as therapeutics. Recently, adeno-associated viral (AAV) vectors, which can be potentially used for human gene therapy, have been produced in insect cells using three baculovirus vectors to supply the required genes. The use of host insect cells allows mass production of VLPs in a proven scaleable system. This chapter focuses on the methodology, based on the work done in our lab, for the production of AAV-like particles and vectors in a BEVS/insect cell system.


Subject(s)
Baculoviridae/genetics , Dependovirus/genetics , Genetic Vectors/genetics , Insecta/virology , Animals , Baculoviridae/metabolism , Baculoviridae/pathogenicity , Blotting, Western , Cell Line , Dependovirus/metabolism , Dependovirus/pathogenicity , Electrophoresis, Polyacrylamide Gel , Humans , Insecta/cytology
14.
J Pharm Biomed Anal ; 45(3): 417-21, 2007 Nov 05.
Article in English | MEDLINE | ID: mdl-17692493

ABSTRACT

An anion exchange high-performance liquid chromatography (HPLC) method for the quantification of human Reovirus type 3 particles was validated according to the performance criteria of precision, specificity, linearity of calibration and working range, limits of detection and quantification, accuracy and recovery. Samples taken at various stages of Reovirus purification were used for the validation of the method. The method was specific for Reovirus which eluted around 9.8min without interference from any other component in the sample. Reovirus can be detected between 0.32E+12 and 2.10E12VP/mL by the proposed method that has the correlation coefficient of linearity equal to 0.9974 and the slope of linearity equal to 5.74E-07 area units/(VPmL).


Subject(s)
Mammalian orthoreovirus 3/growth & development , Mammalian orthoreovirus 3/isolation & purification , Anion Exchange Resins , Calibration , Chromatography, High Pressure Liquid , Particle Size , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Solutions
15.
Biotechnol Bioeng ; 98(1): 239-51, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17597100

ABSTRACT

The diffusion of viruses toward cells is a limiting step of the infection process. To be modeled correctly, this step must be evaluated in combination with the adsorption of the virus to the cell surface, which is a rapid but reversible step. In this paper, the recombinant adenovirus (rAd) diffusion and its adsorption to 293S cells in suspension were both measured and modeled. First, equilibrium experiments permitted to determine the number of receptors on the surface of 293S (R(T) = 3,500 cell(-1)) and the association constant (K(A) = 1.9 x 10(11) M(-1)) for rAd on these cells based on a simple monovalent adsorption model. Non-specific binding of the virus to the cell surface was not found to be significant. Second, total virus particle degradation rates between 5.2 x 10(-3) and 4.0 x 10(-2) min(-1) were measured at 37 degrees C in culture medium, but no significant virus degradation was observed at 4 degrees C. Third, free viral particle disappearance rates from a mixed suspension of virus and cells were measured at different virus concentrations. Experimental data were compared to a phenomenological dynamic model comprising both the diffusion and the adsorption steps. The diffusion to adsorption ratio, a fitted parameter, confirmed that the contact process of a virus with a cell is indeed diffusion controlled. However, the characteristic diffusion time constants obtained, based on a reversible adsorption model, were eightfolds smaller than those reported in the literature, based on diffusion models that assume irreversible adsorption.


Subject(s)
Adenoviridae/physiology , Kidney/physiology , Kidney/virology , Microfluidics/methods , Models, Biological , Virus Attachment , Adsorption , Cell Line , Computer Simulation , Diffusion , Humans , Kinetics , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...