Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 40(2): 111081, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35830811

ABSTRACT

Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the "alternative lengthening of telomeres" telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Ribonucleases
2.
Nature ; 604(7907): 749-756, 2022 04.
Article in English | MEDLINE | ID: mdl-35444283

ABSTRACT

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Subject(s)
Cyclin E , Membrane Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , CDC2 Protein Kinase , Cyclin E/genetics , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Neoplasms/genetics , Ovarian Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Synthetic Lethal Mutations
3.
Anticancer Drugs ; 29(8): 774-785, 2018 09.
Article in English | MEDLINE | ID: mdl-29878901

ABSTRACT

Triple-negative breast cancer (TNBC) is typically aggressive, difficult to treat, and commonly metastasizes to the visceral organs and soft tissues, including the lungs and the brain. Taxanes represent the most effective and widely used therapeutic class in metastatic TNBC but possess limiting adverse effects that often result in a delay, reduction, or cessation of their use. DZ-2384 is a candidate microtubule-targeting agent with a distinct mechanism of action and strong activity in several preclinical cancer models, with reduced toxicities. DZ-2384 is highly effective in patient-derived taxane-sensitive and taxane-resistant xenograft models of TNBC at lower doses and over a wider range relative to paclitaxel. When comparing compound exposure at minimum effective doses relative to safe exposure levels, the therapeutic window for DZ-2384 is 14-32 compared with 2.0 and less than 2.8 for paclitaxel and docetaxel, respectively. DZ-2384 is effective at reducing brain metastatic lesions when used at maximum tolerated doses and is equivalent to paclitaxel. Drug distribution experiments indicate that DZ-2384 is taken up more efficiently by tumor tissue but at equivalent levels in the brain compared with paclitaxel. Selective DZ-2384 uptake by tumor tissue may in part account for its wider therapeutic window compared with taxanes. In view of the current clinical efforts to combine chemotherapy with immune checkpoint inhibitors, we demonstrate that DZ-2384 acts synergistically with anti-CTLA-4 immunotherapy in a syngeneic murine model. These results demonstrate that DZ-2384 has a superior pharmacologic profile over currently used taxanes and is a promising therapeutic agent for the treatment of metastatic TNBC.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Oxazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents, Immunological/administration & dosage , Brain/metabolism , CTLA-4 Antigen/immunology , Cell Line, Tumor , Drug Synergism , Female , Humans , Lactams, Macrocyclic/administration & dosage , Lactams, Macrocyclic/pharmacokinetics , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Oxazoles/administration & dosage , Oxazoles/pharmacokinetics , Random Allocation , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
Oncotarget ; 8(44): 77846-77859, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100430

ABSTRACT

Tumor cells are particularly dependent on NAD+ due to higher rates of metabolism, DNA synthesis and repair. Nicotinamide phosphoribosyltransferase inhibitors (NAMPTis) inhibit NAD+ biosynthesis and represent promising new anti-cancer agents. However, clinical efficacy has been limited by toxicities demonstrating the need for drug combinations to broaden the therapeutic index. One potential combination involves niacin/NAMPTi co-administration. Niacin can rescue NAD+ biosynthesis through a parallel pathway that depends on nicotinic acid phosphoribosyltransferase (NAPRT) expression. Most normal tissues express NAPRT while a significant proportion of malignant cells do not, providing a possible selection marker for patients to achieve NAMPTi efficacy while minimizing toxicities. Here we identify and validate a novel highly NAPRT-specific monoclonal antibody (3C6D2) that detects functional NAPRT in paraffin embedded tissue sections by immunohistochemistry (IHC). NAPRT detection by 3C6D2 coincides with the ability of niacin to rescue cells from NAMPTi induced cytotoxicity in cell lines and animal xenograft models. 3C6D2 binds to an epitope that is unique to NAPRT among phosphoribosyltransferases. In a series of primary tumor samples from lung and brain cancer patients, we demonstrate that >70 % of human small cell lung carcinomas, glioblastomas and oligodendrogliomas lack NAPRT identifying them as potentially suitable indications for the NAMPT/niacin combination.

5.
Sci Transl Med ; 8(365): 365ra159, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27856798

ABSTRACT

Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety.


Subject(s)
Antineoplastic Agents/pharmacology , Lactams, Macrocyclic/pharmacology , Microtubules/drug effects , Neurons/drug effects , Oxazoles/pharmacology , Vinca Alkaloids/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Dimerization , Genomics , Humans , Lactams, Macrocyclic/chemistry , Mice , Microscopy, Electron , Mitosis , Neoplasm Transplantation , Oxazoles/chemistry , Tubulin/chemistry , Vinblastine/analogs & derivatives , Vinblastine/chemistry , Vinblastine/pharmacology , Vinca Alkaloids/chemistry , Vinorelbine
6.
BMC Cancer ; 15: 568, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26231047

ABSTRACT

BACKGROUND: Obatoclax is a clinical stage drug candidate that has been proposed to target and inhibit prosurvival members of the Bcl-2 family, and thereby contribute to cancer cell lethality. The insolubility of this compound, however, has precluded the use of many classical drug-target interaction assays for its study. Thus, a direct demonstration of the proposed mechanism of action, and preferences for individual Bcl-2 family members, remain to be established. METHODS: Employing modified proteins and lipids, we recapitulated the constitutive association and topology of mitochondrial outer membrane Mcl-1 and Bak in synthetic large unilamellar liposomes, and measured bakdependent bilayer permeability. Additionally, cellular and tumor models, dependent on Mcl-1 for survival, were employed. RESULTS: We show that regulation of bilayer permeabilization by the tBid - Mcl-1 - Bak axis closely resemblesthe tBid - Bcl-XL - Bax model. Obatoclax rapidly and completely partitioned into liposomal lipid but also rapidly exchanged between liposome particles. In this system, obatoclax was found to be a direct and potent antagonist of liposome-bound Mcl-1 but not of liposome-bound Bcl-XL, and did not directly influence Bak. A 2.5 molar excess of obatoclax relative to Mcl-1 overcame Mcl-1-mediated inhibition of tBid-Bak activation. Similar results were found for induction of Bak oligomers by Bim. Obatoclax exhibited potent lethality in a cellmodel dependent on Mcl-1 for viability but not in cells dependent on Bcl-XL. Molecular modeling predicts that the 3-methoxy moiety of obatoclax penetrates into the P2 pocket of the BH3 binding site of Mcl-1. A desmethoxy derivative of obatoclax failed to inhibit Mcl-1 in proteoliposomes and did not kill cells whose survival depends on Mcl-1. Systemic treatment of mice bearing Tsc2(+) (/) (-) Em-myc lymphomas (whose cells depend on Mcl-1 for survival) with obatoclax conferred a survival advantage compared to vehicle alone (median 31 days vs 22 days, respectively; p=0.003). In an Akt-lymphoma mouse model, the anti-tumor effects of obatoclax synergized with doxorubicin. Finally, treatment of the multiple myeloma KMS11 cell model (dependent on Mcl-1 for survival) with dexamethasone induced Bim and Bim-dependent lethality. As predicted for an Mcl-1 antagonist, obatoclax and dexamethasone were synergistic in this model. CONCLUSIONS: Taken together, these findings indicate that obatoclax is a potent antagonist of membranerestricted Mcl-1. Obatoclax represents an attractive chemical series to generate second generation Mcl-1 inhibitors.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Lymphoma/drug therapy , Membrane Proteins/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pyrroles/administration & dosage , Animals , Bcl-2-Like Protein 11 , Cell Line, Tumor , Disease Models, Animal , Doxorubicin/administration & dosage , Drug Synergism , Humans , Indoles , Lymphoma/metabolism , Mice , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Pyrroles/pharmacology , Xenograft Model Antitumor Assays
7.
Mol Cell Biol ; 29(21): 5872-88, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19703994

ABSTRACT

GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD(+) biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD(+) turnover, which makes NAD(+) modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD(+) and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD(+) repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.


Subject(s)
Cyanides/therapeutic use , Guanidines/therapeutic use , NAD/biosynthesis , Neoplasms/drug therapy , Neoplasms/enzymology , Nicotinamide Phosphoribosyltransferase/deficiency , Animals , Cell Death/drug effects , Cell Line, Tumor , Cyanides/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Guanidines/pharmacology , Humans , Mice , Models, Biological , Models, Molecular , Niacin/administration & dosage , Niacin/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Phosphorylation/drug effects , Ribose/metabolism , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
8.
Anticancer Drugs ; 20(5): 346-54, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19369827

ABSTRACT

GMX1778 was recently shown to function as a potent inhibitor of nicotinamide phosphoribosyl transferase. To translate the discovery of GMX1778 mechanism of action into optimal clinical use of its intravenously administered prodrug, GMX1777, the efficacy of GMX1777 was evaluated in xenograft models and the pharmacokinetic profile of GMX1778 and its effect on nicotinamide adenine dinucleotide cellular levels was measured by liquid chromatography/mass spectrometry. Consistent with the requirement for a prolonged exposure for cytotoxicity in vitro, a dose of 75 mg/kg of GMX1777 administered as two bolus intravenous injections in 1 day were not effective at reducing the growth of multiple myeloma (IM-9) tumors, whereas the same dose of GMX1777 administered over a 24 h intravenous infusion caused tumor regression in the IM-9 model, a small-cell lung cancer (SHP-77) model, and a colon carcinoma (HCT-116) model. A 72 h continuous intravenous infusion of GMX1777 was also effective in the IM-9 model, but was associated with a smaller therapeutic index. GMX1777 at a dose of 75 mg/kg administered over a 24 h intravenous infusion produced GMX1778 steady-state plasma levels of approximately 1 microg/ml and caused nicotinamide adenine dinucleotide levels to decrease significantly in tumors. Consistent with the GMX1778 mechanism of action, nicotinic acid protected mice treated with a lethal dose of GMX1777. These data support the design of an open-label, dose-escalation trial, in which patients with refractory solid tumors and lymphomas receive 24 h infusions of GMX1777 as a single agent in 3-week cycles. Furthermore, these results indicate that nicotinic acid is a potent antidote to treat GMX1777 overdose.


Subject(s)
Antineoplastic Agents/therapeutic use , Cytokines/antagonists & inhibitors , Guanidines/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Prodrugs/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/pathology , Cell Line, Tumor/transplantation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Cyanides/administration & dosage , Cyanides/pharmacology , Cyanides/therapeutic use , Drug Screening Assays, Antitumor , Female , Guanidines/administration & dosage , Guanidines/pharmacokinetics , Guanidines/pharmacology , Humans , Infusions, Intravenous , Injections, Intravenous , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , NAD/metabolism , Niacin/metabolism , Niacinamide/metabolism , Xenograft Model Antitumor Assays
9.
J Biol Chem ; 280(19): 19393-400, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15757897

ABSTRACT

Mammalian transient receptor potential canonical channels have been proposed as the molecular entities associated with calcium entry activity in nonexcitable cells. Amino acid sequence analyses of TRPCs revealed the presence of ankyrin-like repeat domains, one of the most common protein-protein interaction motifs. Using a yeast two-hybrid interaction assay, we found that the second ankyrin-like repeat domain of TRPC6 interacted with MxA, a member of the dynamin superfamily. Using a GST pull-down and co-immunoprecipitation assay, we showed that MxA interacted with TRPC1, -3, -4, -5, -6, and -7. Overexpression of MxA in HEK293T cells slightly increased endogenous calcium entry subsequent to stimulation of G(q) protein-coupled receptors or store depletion by thapsigargin. Co-expression of MxA with TRPC6 enhanced agonist-induced or OAG-induced calcium entry activity. GTP binding-defective MxA mutants had only a minor potentiating effect on OAG-induced TRPC6 activity. However, a MxA mutant that could bind GTP but that lacked GTPase activity produced the same effect as MxA on OAG-induced TRPC6 activity. These results indicated that MxA interacted specifically with the second ankyrin-like repeat domain of TRPCs and suggested that monomeric MxA regulated the activity of TRPC6 by a mechanism requiring GTP binding. Additional results showed that an increase in the endogenous expression of MxA, induced by a treatment with interferon alpha, regulated the activity of TRPC6. The study clearly identified MxA as a new regulatory protein involved in Ca2+ signaling.


Subject(s)
Ankyrins/chemistry , Calcium Channels/metabolism , GTP-Binding Proteins/physiology , Amino Acid Motifs , Amino Acid Sequence , Calcium/chemistry , Calcium/metabolism , Calcium Channels/chemistry , Cation Transport Proteins/chemistry , Cell Line , DNA, Complementary/metabolism , GTP-Binding Proteins/metabolism , Glutathione Transferase/metabolism , Guanosine Triphosphate/chemistry , Humans , Immunoblotting , Immunoprecipitation , Interferon-alpha/metabolism , Ion Channels/chemistry , Membrane Proteins/chemistry , Molecular Sequence Data , Mutation , Myxovirus Resistance Proteins , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Spectrometry, Fluorescence , TRPC Cation Channels , TRPC6 Cation Channel , TRPM Cation Channels , Thapsigargin/pharmacology , Time Factors , Transfection , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...