Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 586: 770-781, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28215801

ABSTRACT

Peatlands can be a potential source of dissolved organic matter (DOM) in fresh water catchment areas. The quantity and quality of DOM can differ between pristine, degraded and rewetted peatlands. Due to the large scale and continuing losses of peatlands, their conservation and restoration has been increasingly emphasized. Mostly rewetting measures are required to improve the hydrology of damaged peatlands, which is a precondition for the resettlement of peat-forming plant species. Thus, in term of DOM, there is a special need to understand how rewetting measures affect DOM characteristics and concentrations. To estimate the potential leaching of humic substances from rewetted areas two natural sites were compared with four artificially rewetted sites in a peatland area of the Harz Mountains National Park, Germany. This was done with regards to DOM quality by combining the results from Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, measured at one time in Spring) and excitation-emission-matrix fluorescence spectroscopy (EEMF, measured monthly for the period of one year). The DOM quality was significantly less variable in the pristine peatland soil water compared to the rewetted peatland soil waters, from both a spatial and a seasonal perspective. The soil water from the rewetted peatland sites showed a higher degree of humification compared to pristine peatland. DOC concentration was mostly consistent in the pristine peatland over the year. The rewetted peatlands showed higher DOC levels in Summer months and lower DOC in Winter months compared to the pristine peatland. It can be concluded that the rewetting of peatlands is coupled with high concentrations of DOC in soil water and its quality is highly aromatic (as reflected by the observed values from the humification index) during times with elevated temperature. The results may have a significant input for dynamic catchment area studies with regards to rewetting peatland sites.

2.
Isotopes Environ Health Stud ; 51(2): 300-21, 2015.
Article in English | MEDLINE | ID: mdl-25692907

ABSTRACT

Denitrification is well known being the most important nitrate-consuming process in water-logged peat soils, whereby the intermediate compound nitrous oxide (N(2)O) and the end product dinitrogen (N(2)) are ultimately released. The present study was aimed at evaluating the release of these gases (due to denitrification) from a nutrient-poor transition bog ecosystem under drained and three differently rewetted conditions at the field scale using a (15)N-tracer approach ([(15)N]nitrate application, 30 kg N ha(-1)) and a common closed-chamber technique. The drained site is characterized by a constant water table (WT) of -30 cm (here referred to as D30), while rewetted sites represent a constant WT of -15 cm, a constant WT of 0 cm (i.e. waterlogged), and an initial WT of 0 cm (which decreased slightly during the experiment), respectively, (here referred to as R15, R0, and R0(d), respectively). The highest N(2)O emissions were observed at D30 (291 µg N(2)O-N m(-2) h(-1)) as well as at R0d (665 µg N(2)O-N m(-2) h(-1)). At the rewetted peat sites with a constant WT (i.e. R15 and R0), considerably lower N2O emissions were observed (maximal 37 µg N(2)O-N m(-2) h(-1)). Concerning N(2) only at the initially water-logged peat site R0d considerable release rates (up to 3110 µg N(2)-N m(-2) h(-1)) were observed, while under drained conditions (D30) no N(2) emission and under rewetted conditions with a constant WT (R15 and R0) significantly lower N(2) release rates (maximal 668 µg N(2)-N m(-2) h(-1)) could be detected. In addition, it has been found that natural WT fluctuations at rewetted peat sites, in particular a rapid drop down of the WT, can induce high emission rates for both N(2)O and N(2).


Subject(s)
Denitrification , Nitrogen/analysis , Nitrous Oxide/analysis , Wetlands , Bromides/analysis , Environmental Monitoring , Germany , Nitrates/analysis , Nitrogen Isotopes/analysis
3.
Isotopes Environ Health Stud ; 49(4): 438-53, 2013.
Article in English | MEDLINE | ID: mdl-24313368

ABSTRACT

Under natural conditions, peatlands are generally nitrate-limited. However, recent concerns about an additional N input into peatlands by atmospheric N deposition have highlighted the risk of an increased denitrification activity and hence the likelihood of a rise of emissions of the greenhouse gas nitrous oxide. Therefore, the aim of the present study was to investigate the turnover of added nitrate in a drained and a rewetted peatland using a [(15)N]nitrate-bromide double-tracer method. The double-tracer method allows a separation between physical effects (dilution, dispersion and dislocation) and microbial and chemical nitrate transformation by comparing with the conservative Br(-) tracer. In the drained peat site, low NO3(-) consumption rates have been observed. In contrast, NO3(-) consumption at the rewetted peat site rises rapidly to about 100% within 4 days after tracer application. Concomitantly, the (15)N abundances of nitrite and ammonium in soil water increased and lead to the conclusion that, besides commonly known NO3(-) reduction to nitrite (i.e. denitrification), a dissimilatory nitrate reduction to ammonium has simultaneously taken place. The present study reveals that increasing NO3(-) inputs into rewetted peatlands via atmospheric deposition results in a rapid NO3(-) consumption, which could lead to an increase in N2O emissions into the atmosphere.


Subject(s)
Nitrates/analysis , Soil Pollutants/analysis , Ammonium Compounds/analysis , Bromides/analysis , Environmental Monitoring , Germany , Nitrites/analysis , Nitrogen Isotopes/analysis , Soil/chemistry , Water/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...