Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6634, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503830

ABSTRACT

Troponin T concentration (TNT) is commonly considered a marker of myocardial damage. However, elevated concentrations have been demonstrated in numerous neuromuscular disorders, pointing to the skeletal muscle as a possible extracardiac origin. The aim of this study was to determine disease-related changes of TNT in 5q-associated spinal muscular atrophy (SMA) and to screen for its biomarker potential in SMA. We therefore included 48 pediatric and 45 adult SMA patients in this retrospective cross-sequential observational study. Fluid muscle integrity and cardiac markers were analyzed in the serum of treatment-naïve patients and subsequently under disease-modifying therapies. We found a TNT elevation in 61% of SMA patients but no elevation of the cardiospecific isoform Troponin I (TNI). TNT elevation was more pronounced in children and particularly infants with aggressive phenotypes. In adults, TNT correlated to muscle destruction and decreased under therapy only in the subgroup with elevated TNT at baseline. In conclusion, TNT was elevated in a relevant proportion of patients with SMA with emphasis in infants and more aggressive phenotypes. Normal TNI levels support a likely extracardiac origin. Although its stand-alone biomarker potential seems to be limited, exploring TNT in SMA underlines the investigation of skeletal muscle integrity markers.


Subject(s)
Muscular Atrophy, Spinal , Troponin T , Adult , Humans , Child , Troponin T/genetics , Retrospective Studies , Troponin I , Muscular Atrophy, Spinal/diagnosis , Biomarkers
2.
Int J Mol Sci ; 24(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37511443

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an invariably fatal neurodegenerative disease with limited therapeutic options. There is an urgent need for novel biomarkers to be used as surrogates for new therapeutic trials and disease monitoring. In this study, we sought to systematically study creatine kinase isoenzyme MB (CK-MB) in a real-world cohort of ALS patients, assess the diagnostic performance, and evaluate its association with other laboratory and clinical parameters. We reviewed data from 194 consecutive patients that included 130 ALS patients and 64 disease control patients (primary lateral sclerosis [PLS], benign fasciculations syndrome [BFS], Huntington's disease [HD] and Alzheimer's disease [AD]). CK-MB was elevated in the sera of more than half of all patients with ALS. In patients with spinal-onset ALS, CK-MB levels were significantly higher than in patients with other neurodegenerative diseases. Patients with slower rates of functional decline had a significantly higher baseline CK-MB. Furthermore, CK-MB elevations correlated with cardiac troponin T (cTnT) and with revised ALS Functional Rating Scale (ALSFRS-R) bulbar subcategory. We posit that measuring CK-MB in ALS patients in a complimentary fashion could potentially aid in the diagnostic workup of ALS and help discriminate the disease from some ALS mimics and other neurodegenerative diseases. CK-MB levels also may provide valuable prognostic information regarding disease aggressiveness as well as correlations with specific phenotypic presentations.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Isoenzymes , Creatine Kinase, MB Form , Creatine Kinase , Biomarkers
3.
Muscle Nerve ; 67(6): 515-521, 2023 06.
Article in English | MEDLINE | ID: mdl-36928619

ABSTRACT

INTRODUCTION/AIMS: In amyotrophic lateral sclerosis (ALS) caused by superoxide dismutase 1 (SOD1) gene mutations (SOD1-ALS), the antisense oligonucleotide tofersen had been investigated in a phase III study (VALOR) and subsequently introduced in an expanded access program. In this study we assess neurofilament light chain (NfL) before and during tofersen treatment. METHODS: In six SOD1-ALS patients treated with tofersen at three specialized ALS centers in Germany, NfL in cerebrospinal fluid (CSF-NfL) and/or serum (sNfL) were investigated using the ALS Functional Rating Scale Revised (ALSFRS-R) and ALS progression rate (ALS-PR), defined by monthly decline of ALSFRS-R. RESULTS: Three of the six SOD1-ALS patients reported a negative family history. Three patients harbored a homozygous c.272A > C, p.(Asp91Ala) mutation. These and two other patients showed slower progressing ALS (defined by ALS-PR <0.9), whereas one patient demonstrated rapidly progressing ALS (ALS-PR = 2.66). Mean treatment duration was 6.5 (range 5 to 8) months. In all patients, NfL decreased (mean CSF-NfL: -66%, range -52% to -86%; mean sNfL: -62%, range -36% to -84%). sNfL after 5 months of tofersen treatment was significantly reduced compared with the nearest pretreatment measurement (P = .017). ALS-PR decreased in two patients, whereas no changes in ALSFRS-R were observed in four participants who had very low ALS-PR or ALSFRS-R values before treatment. DISCUSSION: In this case series, the significant NfL decline after tofersen treatment confirmed its value as response biomarker in an expanded clinical spectrum of SOD1-ALS. Given the previously reported strong correlation between sNfL and ALS progression, the NfL treatment response supports the notion of tofersen having disease-modifying activity.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Oligonucleotides, Antisense/therapeutic use , Superoxide Dismutase-1/genetics , Intermediate Filaments , Biomarkers , Neurofilament Proteins
4.
JMIR Res Protoc ; 10(11): e30259, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34559059

ABSTRACT

BACKGROUND: There is a dearth of information about "brain fog," characterized by concentration, word-finding, or memory problems, which has been listed in the new World Health Organization provisional classification "U09.9 Post-COVID-19 Condition." Moreover, the extent to which these symptoms may be associated with neurological, pulmonary, or psychiatric difficulties is unclear. OBJECTIVE: This ongoing cohort study aims to carefully assess neurocognitive function in the context of the neurological, psychiatric, and pulmonary sequelae of SARS-CoV-2 infection among patients with asymptomatic/mild and severe cases of COVID-19 after remission, including actively recruited healthy controls. METHODS: A total of 150 participants will be included in this pilot study. The cohort will comprise patients who tested positive for SARS-CoV-2 infection with either an asymptomatic course or a mild course defined as no symptoms except for olfactory and taste dysfunction (n=50), patients who tested positive for SARS-CoV-2 infection with a severe disease course (n=50), and a healthy control group (n=50) with similar age and sex distribution based on frequency matching. A comprehensive neuropsychological assessment will be performed comprising nuanced aspects of complex attention, including language, executive function, verbal and visual learning, and memory. Psychiatric, personality, social and lifestyle factors, sleep, and fatigue will be evaluated. Brain magnetic resonance imaging, neurological and physical assessment, and pulmonological and lung function examinations (including body plethysmography, diffusion capacity, clinical assessments, and questionnaires) will also be performed. Three visits are planned with comprehensive testing at the baseline and 12-month visits, along with brief neurological and neuropsychological examinations at the 6-month assessment. Blood-based biomarkers of neurodegeneration will be quantified at baseline and 12-month follow-up. RESULTS: At the time of submission, the study had begun recruitment through telephone and in-person screenings. The first patient was enrolled in the study at the beginning of April 2021. Interim data analysis of baseline information is expected to be complete by December 2021 and study completion is expected at the end of December 2022. Preliminary group comparisons indicate worse word list learning, short- and long-delayed verbal recall, and verbal recognition in both patient cohorts compared with those of the healthy control group, adjusted for age and sex. Initial volumetric comparisons show smaller grey matter, frontal, and temporal brain volumes in both patient groups compared with those of healthy controls. These results are quite robust but are neither final nor placed in the needed context intended at study completion. CONCLUSIONS: To the best of our knowledge, this is the first study to include objective and comprehensive longitudinal analyses of neurocognitive sequelae of COVID-19 in an extreme group comparison stratified by disease severity with healthy controls actively recruited during the pandemic. Results from this study will contribute to the nascent literature on the prolonged effects of COVID-19 on neurocognitive performance via our coassessment of neuroradiological, neurological, pulmonary, psychiatric, and lifestyle factors. TRIAL REGISTRATION: International Clinical Trials Registry Platform DRKS00023806; https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00023806. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30259.

SELECTION OF CITATIONS
SEARCH DETAIL
...