Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Cannabis Res ; 6(1): 25, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778343

ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation, demyelination and axonal loss. Cannabis, an immunomodulating agent, is known for its ability to treat MS effectively. However, due to variations in the profile of secondary metabolites, especially cannabinoids, among cannabis cultivars, the effectiveness of cannabis treatment can vary, with significant variability in the effects on different biological parameters. For screening available cultivars, cellular in vitro as well as pre-clinical in vivo assays, are required to evaluate the effectiveness of the wide range of chemical variability that exists in cannabis cultivars. This study evaluated comparatively three chemically diverse cannabis cultivars, CN2, CN4 and CN6, containing different ratios of phytocannabinoids, for their neuroinflammatory activity in MS model. MATERIALS AND METHODS: In vitro experiments were performed with lipopolysaccharide (LPS)-activated BV-2 microglia and primary glial cells to evaluate the effect of different cannabis cultivars on nitric oxide (NO) and inflammatory cytokines, as well as inducible nitric oxide synthase (iNOS) protein expression. An in vivo experiment using the experimental autoimmune encephalomyelitis (EAE) MS model was conducted using Myelin oligodendrocyte glycoprotein (MOG) as the activating peptide. The cannabis extracts of the cultivars CN2, CN4, CN6 or vehicle, were intraperitoneally injected with clinical scores given based on observed symptoms over the course of study. At the end of the experiment, the mice were sacrificed, and splenocyte cytokine secretion was measured using ELISA. Lumbar sections from the spinal cord of treated MS mice were evaluated for microglia, astrocytes and CD4+ cells. RESULTS: Extracts of the CN2 cultivar contained tetrahydrocannabinolic acid (THCA) and tetrahydrocannabinol (THC) without cannabidiol (CBD), and a number of monoterpenes. CN4 contained cannabidiolic acid (CBDA) and tetrahydrocannabidiolic acid (THCA), with significant amounts of THC: CBD in a 1:1 ratio, as well as sesquiterpenes and some monoterpenes; and CN6 contained primarily CBDA and THCA, as well as THC and CBD in a 2:1 ratio, with some sesquiterpenes and no monoterpenes. All extracts were not cytotoxic in glial cells up to 50 µg/ml. Dose dependent inhibition of LPS-induced BV2 as well as primary microglial NO secretion confirmed the anti-inflammatory and anti-oxidative activity of the three cannabis cultivars. CN2 but not CN4 reduced both astrocytosis and microglial activation in lumbar sections of EAE mice. In contrast, CN4 but not CN2 significantly decreased the secretion of TNFα and Interferon γ (IFNγ) in primary splenocytes extracted from EAE mice. CONCLUSIONS: While both cannabis cultivars, CN2 and CN4, significantly reduced the severity of the clinical signs throughout the course of the study, they modulated different inflammatory mediators and pathways, probably due to differences in their phytocannabinoid composition. This demonstrates the differential potential of cannabis cultivars differing in chemotype to regulate neuroinflammation and their potential to treat MS.

2.
Water Res X ; 21: 100203, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38098886

ABSTRACT

Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.

3.
Plants (Basel) ; 12(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37514290

ABSTRACT

Recent studies demonstrated a significant impact of some major macronutrients on function and production of medical cannabis plants, yet information on the effect of most nutrients, including Mg, is scarce. Magnesium is required for major physiological functions and metabolic processes in plants, and in the present study we studied the effects of five Mg treatments (2, 20, 35, 70, and 140 mg L-1 Mg), on plant development and function, and distribution of minerals in drug-type (medical) cannabis plants, at the vegetative growth phase. The plants were cultivated in pots under controlled environment conditions. The results demonstrate that plant development is optimal under Mg supply of 35-70 mg L-1 (ppm), and impaired under lower Mg input of 2-20 mg L-1. Two mg L-1 Mg resulted in visual deficiency symptoms, shorter plants, reduced photosynthesis rate, transpiration rate, photosynthetic pigments and stomatal conduction in young-mature leaves, and a 28% reduction of total plant biomass compared to the optimal supply of 35 mg L-1 Mg. The highest supply level of 140 mg L-1 Mg induced a small decrease in physiological function, which did not affect morphological development and biomass accumulation. The low-deficient Mg supply of 2 mg L-1 Mg stimulated Mg uptake and accumulation of N, P, K, Ca, Mn, and Zn in the plant. Increased Mg supply impaired uptake of Ca and K and their root-to-shoot translocation, demonstrating competitive cation inhibition. Mg-deficiency symptoms developed first in old leaves (at 2 mg L-1 Mg) and progressed towards young-mature leaves, demonstrating ability for Mg in-planta storage and remobilization. Mg toxicity symptoms appeared in old leaves from the bottom of the plants, under 140 mg L-1 Mg. Taken together, the findings suggest 35-70 mg L-1 Mg as the optimal concentration range for cannabis plant development and function at the vegetative growth phase.

4.
Biomolecules ; 13(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36830745

ABSTRACT

Multiple sclerosis (MS) is a widespread chronic neuroinflammatory and neurodegenerative disease. Microglia play a crucial role in the pathogenesis of MS via the release of cytokines and reactive oxygen species, e.g., nitric oxide. Research involving the role of phytocannabinoids in neuroinflammation is currently receiving much attention. Cannabigerol is a main phytocannabinoid, which has attracted significant pharmacological interest due to its non-psychotropic nature. In this research, we studied the effects of cannabigerol on microglial inflammation in vitro, followed by an in vivo study. Cannabigerol attenuated the microglial production of nitric oxide in BV2 microglia and primary glial cells; concomitant treatment of the cells with cannabigerol and telmisartan (a neuroprotective angiotensin receptor blocker) decreased nitric oxide production additively. Inducible nitric oxide synthase (iNOS) expression was also reduced by cannabigerol. Moreover, tumor necrosis factor-α (TNF-α), a major cytokine involved in MS, was significantly reduced by cannabigerol in both cell cultures. Next, we studied the effects of cannabigerol in vivo using a mice model of MS, experimental autoimmune encephalomyelitis (EAE). The clinical scores of EAE mice were attenuated upon cannabigerol treatment; additionally, lumbar sections of EAE mice showed enhanced neuronal loss (relative to control mice), which was restored by cannabigerol treatment. Altogether, the set of experiments presented in this work indicates that cannabigerol possesses an appealing therapeutic potential for the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , Mice , Animals , Microglia/metabolism , Multiple Sclerosis/metabolism , Neurodegenerative Diseases/metabolism , Nitric Oxide/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology
5.
Front Plant Sci ; 13: 713481, 2022.
Article in English | MEDLINE | ID: mdl-36247643

ABSTRACT

A major challenge for utilizing cannabis for modern medicine is the spatial variability of cannabinoids in the plant, which entail differences in medical potency. Since secondary metabolism is affected by environmental conditions, a key trigger for the variability in secondary metabolites throughout the plant is variation in local micro-climates. We have, therefore, hypothesized that plant density, which is well-known to alter micro-climate in the canopy, affects spatial standardization, and concentrations of cannabinoids in cannabis plants. Canopy density is affected by shoot architecture and by plant spacing, and we have therefore evaluated the interplay between plant architecture and plant density on the standardization of the cannabinoid profile in the plant. Four plant architecture modulation treatments were employed on a drug-type medicinal cannabis cultivar, under a density of 1 or 2 plants/m2. The plants were cultivated in a naturally lit greenhouse with photoperiodic light supplementation. Analysis of cannabinoid concentrations at five locations throughout the plant was used to evaluate treatment effects on chemical uniformity. The results revealed an effect of plant density on cannabinoid standardization, as well as an interaction between plant density and plant architecture on the standardization of cannabinoids, thus supporting the hypothesis. Increasing planting density from 1 to 2 plants/m2 reduced inflorescence yield/plant, but increased yield quantity per area by 28-44% in most plant architecture treatments. The chemical response to plant density and architecture modulation was cannabinoid-specific. Concentrations of cannabinoids in axillary inflorescences from the bottom of the plants were up to 90% lower than in the apical inflorescence at the top of the plant, considerably reducing plant uniformity. Concentrations of all detected cannabinoids in these inflorescences were lower at the higher density plants; however, cannabinoid yield per cultivation area was not affected by neither architecture nor density treatments. Cannabigerolic acid (CBGA) was the cannabinoid least affected by spatial location in the plant. The morpho-physiological response of the plants to high density involved enhanced leaf drying at the bottom of the plants, increased plant elongation, and reduced cannabinoid concentrations, suggesting an involvement of chronic light deprivation at the bottom of the plants. Therefore, most importantly, under high density growth, architectural modulating treatments that facilitate increased light penetration to the bottom of the plant such as "Defoliation", or that eliminated inflorescences development at the bottom of the plant such as removal of branches from the lower parts of the plant, increased chemical standardization. This study revealed the importance of plant density and architecture for chemical quality and standardization in drug-type medical cannabis.

6.
Biotechnol Adv ; 61: 108031, 2022 12.
Article in English | MEDLINE | ID: mdl-36058440

ABSTRACT

Recent studies highlight the therapeutic virtues of cannabidiol (CBD). Furthermore, due to their molecular enriched profiles, cannabis inflorescences are biologically superior to a single cannabinoid for the treatment of various health conditions. Thus, there is flourishing demand for Cannabis sativa varieties containing high levels of CBD. Additionally, legal regulations around the world restrict the cultivation and consumption of tetrahydrocannabinol (THC)-rich cannabis plants for their psychotropic effects. Therefore, the use of cannabis varieties that are high in CBD is permitted as long as their THC content does not exceed a low threshold of 0.3%-0.5%, depending on the jurisdiction. These chemovars are legally termed 'hemp'. This controlled cannabinoid requirement highlights the need to detect low levels of THC, already in the field. In this review, cannabis profiling and the existing methods used for the detection of cannabinoids are firstly evaluated. Then, selected valuable biosensor technologies are discussed, which suggest portable, rapid, sensitive, reproducible, and reliable methods for on-site identification of cannabinoids levels, mainly THC. Recent cutting-edge techniques of promising potential usage for both cannabis and hemp analysis are identified, as part of the future cultivation and agricultural improvement of this crop.


Subject(s)
Biosensing Techniques , Cannabidiol , Cannabinoids , Cannabis , Dronabinol
7.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889677

ABSTRACT

The surface quality of denture base resins allows for easy colonization by microorganisms including Candida albicans and Staphylococcus aureus, which cause major diseases of the oral cavity such as denture stomatitis. The widespread use of silver nanoparticles (AgNPs) in various fields of medicine has led to research of their possible application in dentistry, mostly in the prevention of bacterial adhesion, proliferation, and biofilm formation. The aim of the study was to synthesize cold and heat-curing denture base resins modified with AgNPs and AgCl, and evaluate the potential of the modified resins to reduce the growth of C. albicans and S.aureus. The produced material was characterized by Fourier transform infrared spectroscopy (FTIR). The antimicrobial potential of the modified material was demonstrated by the disc-diffusion method, microdilution method, and a modified microdilution method (i.e., disk-diffusion method in broth with viable counting). Spectroscopy confirmed the incorporation of biocidal materials into the structure of the denture base resins. The AgCl and AgNPs modified resins showed an antimicrobial effect. The significance of the study is in the potential therapeutic effects of the modified materials for prevention and threating staphylococci and candida in elderly patients, who are in most cases denture wearers and have a greater susceptibility to develop opportunistic infections. Modified denture base resins can significantly reduce the presence of infection at the point of contact between the denture and the mucous membrane of the prosthetic restoration. Biological tests of modified denture base resins will follow.

8.
Article in English | MEDLINE | ID: mdl-35795290

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver abnormalities and has been linked with metabolic syndrome hallmarks. Unfortunately, current treatments are limited. This work aimed to elucidate the effects of three cannabis extracts on metabolic alteration and gut microbiota composition in a mouse model of NAFLD and obesity. Male mice were fed with a high-fat diet (HFD) for 12 weeks. Following the establishment of obesity, the HFD-fed group was subdivided into HFD or HFD that was supplemented with one of three cannabis extracts (CN1, CN2, and CN6) for additional 8 weeks. Metabolic parameters together with intestinal microbiota composition were evaluated. Except for several minor changes in gene expression, no profound metabolic effect was found due to cannabis extracts addition. Nevertheless, marked changes were observed in gut microbiota diversity and composition, with CN1 and CN6 exhibiting microbial abundance patterns that are associated with more beneficial outcomes. Taken together, specific cannabis extracts' addition to an HFD results in more favorable modifications in gut microbiota. Although no marked metabolic effect was disclosed, longer treatments duration and/or higher extracts concentrations may be needed. More research is required to ascertain this conjecture and to establish the influence of various cannabis extracts on host health in general and NAFLD in particular.

9.
Front Plant Sci ; 13: 830224, 2022.
Article in English | MEDLINE | ID: mdl-35720524

ABSTRACT

The N form supplied to the plant, ammonium (NH4 +) or nitrate (NO3 -), is a major factor determining the impact of N nutrition on plant function and metabolic responses. We have hypothesized that the ratio of NH4/NO3 supplied to cannabis plants affects the physiological function and the biosynthesis of cannabinoids and terpenoids, which are major factors in the cannabis industry. To evaluate the hypothesis we examined the impact of five supply ratios of NH4/NO3 (0, 10, 30, 50, and 100% N-NH4 +, under a uniform level of 200 mg L-1 N) on plant response. The plants were grown in pots, under controlled environment conditions. The results revealed high sensitivity of cannabinoid and terpenoid concentrations and plant function to NH4/NO3 ratio, thus supporting the hypothesis. The increase in NH4 supply generally caused an adverse response: Secondary metabolite production, inflorescence yield, plant height, inflorescence length, transpiration and photosynthesis rates, stomatal conductance, and chlorophyll content, were highest under NO3 nutrition when no NH4 was supplied. Ratios of 10-30% NH4 did not substantially impair secondary metabolism and plant function, but produced smaller inflorescences and lower inflorescence yield compared with only NO3 nutrition. Under a level of 50% NH4, the plants demonstrated toxicity symptoms, which appeared only at late stages of plant maturation, and 100% NH4 induced substantial plant damage, resulting in plant death. This study demonstrates a dramatic impact of N form on cannabis plant function and production, with a 46% decrease in inflorescence yield with the increase in NH4 supply from 0 to 50%. Yet, moderate levels of 10-30% NH4 are suitable for medical cannabis cultivation, as they do not damage plant function and show only little adverse influence on yield and cannabinoid production. Higher NH4/NO3 ratios, containing above 30% NH4, are not recommended since they increase the potential for a severe and fatal NH4 toxicity damage.

10.
Environ Res ; 211: 113021, 2022 08.
Article in English | MEDLINE | ID: mdl-35276198

ABSTRACT

Agricultural use of treated wastewater (TWW) is an effective means to reduce freshwater (FW) consumption. However, there is a growing concern regarding the potential dissemination of antibiotic resistance elements by TWW irrigation. We hypothesized that higher levels of antibiotic resistance genes (ARGs) would be detected in soil and crops irrigated with TWW compared to FW irrigation. To test our prediction, samples of water (FW, secondary TWW, and tertiary TWW), irrigated soils, and crops (tomato) surface wash were collected during two consecutive growing seasons. The ARGs conferring resistance to sulfonamide, fluoroquinolone, penicillin, erythromycin and tetracycline were quantified in the samples, alongside Class 1 integron-integrase and the bacterial 16 S rRNA encoding genes. Contrary to our hypothesis, ARGs in the irrigation water were not propagated to either the irrigated soil, or the tomato. The tomato surface wash featured a variety of ARGs that were undetected in neither the waters nor the irrigated soils. Therefore, we cautiously question the link between irrigation water quality and the soil and produce resistomes.


Subject(s)
Solanum lycopersicum , Wastewater , Agricultural Irrigation , Anti-Bacterial Agents/pharmacology , Crops, Agricultural , Drug Resistance, Microbial/genetics , Fresh Water , Soil , Soil Microbiology , Wastewater/analysis
11.
Sci Total Environ ; 807(Pt 2): 151525, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34748848

ABSTRACT

Irrigation with treated effluent is expanding as freshwater sources diminish, but hampered by growing concerns of pharmaceuticals contamination, specifically antibiotics and resistance determinants. To evaluate this concern, freshwater and effluent were applied to an open field that was treated with soil barriers including plastic mulch together with surface and subsurface drip irrigation, cultivating freshly eaten crops (cucumbers or melons) for two consecutive growing seasons. We hypothesized that the effluent carries antibiotics and resistance determinants to the drip-irrigated soil and crops regardless of the treatment. To test our hypothesis, we monitored for antibiotics abundance (erythromycin, sulfamethoxazole, tetracycline, chlortetracycline, oxytetracycline, amoxicillin, and ofloxacin) and their corresponding resistance genes (ermB, ermF, sul1, tetW, tetO, blaTEM and qnrB), together with class 1 integron (intl1), and bacterial 16S rRNA, in water, soil, and crop samples taken over two years of cultivation. The results showed that an array of antibiotics and their corresponding resistance genes were detected in the effluent but not the freshwater. Yet, there were no significant differences in the distribution or abundance of antibiotics and resistance genes, regardless of the irrigation water quality, or crop type (p > 0.05), but plastic-covered soil irrigated with effluent retained the antibiotics oxytetracycline and ofloxacin (p < 0.05). However, we could not detect significant correlations between the detected antibiotics and the corresponding resistance genes. Overall, our findings disproved our hypothesis suggesting that treated effluent may not carry antibiotics resistance genes to the irrigated soil and crops yet, plastic mulch covered soil retain some antibiotics that may inflict long term contamination.


Subject(s)
Anti-Bacterial Agents , Soil , Crops, Agricultural , RNA, Ribosomal, 16S/genetics
12.
Plants (Basel) ; 10(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34579367

ABSTRACT

Since plant organs sense their environment locally, gradients of micro-climates in the plant shoot may induce spatial variability in the physiological state of the plant tissue and hence secondary metabolism. Therefore, plant architecture, which affects micro-climate in the shoot, may considerably affect the uniformity of cannabinoids in the Cannabis sativa plant, which has significant pharmaceutical and economic importance. Variability of micro-climates in plant shoots intensifies with the increase in plant size, largely due to an increase in inter-shoot shading. In this study, we therefore focused on the interplay between shoot architecture and the cannabinoid profile in large cannabis plants, ~2.5 m in height, with the goal to harness architecture modulation for the standardization of cannabinoid concentrations in large plants. We hypothesized that (i) a gradient of light intensity along the plants is accompanied by changes to the cannabinoid profile, and (ii) manipulations of plant architecture that increase light penetration to the plant increase cannabinoid uniformity and yield biomass. To test these hypotheses, we investigated effects of eight plant architecture manipulation treatments involving branch removals, defoliation, and pruning on plant morpho-physiology, inflorescence yield, cannabinoid profile, and uniformity. The results revealed that low cannabinoid concentrations in inflorescences at the bottom of the plants correlate with low light penetration, and that increasing light penetration by defoliation or removal of bottom branches and leaves increases cannabinoid concentrations locally and thereby through spatial uniformity, thus supporting the hypotheses. Taken together, the results reveal that shoot architectural modulation can be utilized to increase cannabinoid standardization in large cannabis plants, and that the cannabinoid profile in an inflorescence is an outcome of exogenous and endogenous factors.

13.
Front Plant Sci ; 12: 657323, 2021.
Article in English | MEDLINE | ID: mdl-34335641

ABSTRACT

Environmental conditions, including the availability of mineral nutrients, affect secondary metabolism in plants. Therefore, growing conditions have significant pharmaceutical and economic importance for Cannabis sativa. Phosphorous is an essential macronutrient that affects central biosynthesis pathways. In this study, we evaluated the hypothesis that P uptake, distribution and availability in the plant affect the biosynthesis of cannabinoids. Two genotypes of medical "drug-type" cannabis plants were grown under five P concentrations of 5, 15, 30, 60, and 90 mg L-1 (ppm) in controlled environmental conditions. The results reveal several dose-dependent effects of P nutrition on the cannabinoid profile of both genotypes, as well as on the ionome and plant functional physiology, thus supporting the hypothesis: (i) P concentrations ≤15 mg L-1 were insufficient to support optimal plant function and reduced photosynthesis, transpiration, stomatal conductance and growth; (ii) 30-90 mg L-1 P was within the optimal range for plant development and function, and 30 mg L-1 P was sufficient for producing 80% of the maximum yield; (iii) Ionome: about 80% of the plant P accumulated in the unfertilized inflorescences; (iv) Cannabinoids: P supply higher than 5 mg L-1 reduced Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) concentrations in the inflorescences by up to 25%. Cannabinoid concentrations decreased linearly with increasing yield, consistent with a yield dilution effect, but the total cannabinoid content per plant increased with increasing P supply. These results reveal contrasting trends for effects of P supply on cannabinoid concentrations that were highest under <30 mg L-1 P, vs. inflorescence biomass that was highest under 30-90 mg L-1 P. Thus, the P regime should be adjusted to reflect production goals. The results demonstrate the potential of mineral nutrition to regulate cannabinoid metabolism and optimize pharmacological quality.

14.
Antioxidants (Basel) ; 10(6)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067432

ABSTRACT

The oil extracted from hemp seeds has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. The potential of this oil for the prevention of oxidative stress and for the treatment of oxidative-stress-induced ailments is of increasing interest. Most studies of hemp seed oil were conducted in-vitro, meaning we lack information about effects and activity in vivo. In the present study, we evaluated the hypothesis that hemp seed oil at different concentrations improves the oxidative state of D. melanogaster, under non-stress as well as hydrogen-peroxide-induced stress. We analyzed the effects of hemp seed oil on oxidative stress markers and on the life cycle of D.melanogaster under non-stress and hydrogen-peroxide-induced stress conditions. D.melanogaster larvae were exposed to hemp seed oil concentrations ranging from 12.5 to 125 µL/mL. The results revealed that under non-stress conditions, oil concentrations up to 62.5 µL/mL did not induce negative effects on the life cycle of D. melanogaster and maintained the redox status of the larval cells at similar levels to the control level. Under oxidative stress conditions, biochemical parameters were significantly affected and only two oil concentrations, 18.7 and 31.2 µL/mL, provided protection against hydrogen peroxide stress effects. A higher oil concentration (125 µL/mL) exerted negative effects on the oxidative status and increased larval mortality. The tested oil was characterized chemically by NMR, transesterification, and silylation, followed by GC-MS analyses, and was shown to contain polyunsaturated fatty acid triglycerides and low levels of tocopherols. The high levels of linoleic and linolenic acids in the oil are suggested to be responsible for the observed in vivo antioxidant effects. Taken together, the results show that hemp seed oil is effective for reducing oxidative stress at the cellular level, thus supporting the hypothesis. The obtained results point to the potential of hemp seed oil for the prevention and treatment of conditions caused by the action of reactive oxygen species.

15.
Sci Total Environ ; 782: 146835, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33838375

ABSTRACT

Diminishing freshwater (FW) supplies necessitate the reuse of treated wastewater (TWW) for various purposes, like irrigation of agricultural lands. However, there is a growing concern that irrigation with TWW may transfer antibiotic resistance genes (ARGs) to the soil and crops. We hypothesized that TWW irrigation would increase the prevalence of antibiotic residues together with the corresponding ARGs in the irrigated soil. We further predicted that soil texture, especially pH, clay content, and organic matter variabilities, would change the antibiotic residues concentrations and thus ARGs dissemination. To test our predictions, three soils types (loamy-sand, loam, and clay) were irrigated with two water types (FW and TWW), over two consecutive seasons. We monitored physico-chemical parameters, the abundance of seven antibiotic residues, and their corresponding ARGs together with class 1 integron (intI1) in 54 water and soil samples collected at the end of the field experiments. The results revealed increase in antibiotics concentrations and ARGs relative abundance in TWW than FW. Yet, in the soil ARGs relative abundances were independent of the irrigation water quality, but dependent on the soil type, especially the clay content. Further, there were no clear associations between the targeted antibiotics or the presence of heavy metals and ARGs' relative abundance in the water or soil samples. Therefore, our results question the link between the discharge of antibiotics and heavy metals, and the dissemination of ARGs in soil environments.


Subject(s)
Soil , Wastewater , Agricultural Irrigation , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Soil Microbiology , Wastewater/analysis
16.
Chemosphere ; 263: 128241, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297188

ABSTRACT

The world acceptance of medical cannabis slowly widens. Cannabinoids are known as the main therapeutic active compounds in the cannabis plant, yet their bioactive physiological effects are still unknown. In this study, the mode of action of nine selected cannabinoids was examined using a bioluminescent bacterial panel, as well as the extracts of six different cannabis varieties and cannabinoids standards artificial mixtures. The bacterial panel was composed of genetically modified E. coli bacteria that is commonly found in the gut microbiome, to which a lux operon was added to various stress promoters. The panel was exposed to the cannabinoids in order to identify bacterial defense mechanism, via the aforementioned specific stress types response. This enables the understanding of the toxicity mode of action of cannabinoids. From all the tested cannabinoids, only delta-9-tetrahydrocannabinol (THC) and delta-9-tetrahydrocannabinolic acid A (THCA) produced a genotoxic effect, while the other tested cannabinoids, demonstrated cytotoxic or oxidative damages. Unlike pure cannabinoids, cannabis plant extracts exhibited mostly genotoxicity, with minor cytotoxicity or oxidative stress responses. Moreover, cannabinoids standards artificial mixtures produced a different response patterns compared to their individual effects, which may be due to additional synergistic or antagonistic reactions between the mixed chemicals on the bacterial panel. The results showed that despite the lack of cannabigerol (CBG), cannabidivarin (CBDV), cannabinol (CBN), and cannabichromene (CBC) in the artificial solution mimicking the CN6 cannabis variety, a similar response pattern to the cannabinoids standards mixture was obtained. This work contributes to the understanding of such correlations and may provide a realistic view of cannabinoid effects on the human microbiome.


Subject(s)
Cannabis , Microbiota , Cannabis/toxicity , Dronabinol/toxicity , Escherichia coli/genetics , Humans , Plant Extracts
17.
Phytother Res ; 35(4): 1908-1924, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33164294

ABSTRACT

The popularity of natural medicine is growing worldwide. Unlike conventional licensed medicines, herbal medicine practices are usually not supported by effectiveness, efficacy, or safety studies, which raise concerns about potential risks involved in their usage, particularly in high-risk patients such as pregnant women where teratogenicity is a concern. Despite a lack of science-based evidence, the use of herbal products for the management of pregnancy-associated challenges is common, due to the common notion that they are free of toxic effects and adverse reactions because they are "natural." The lack of concern about utilizing herbal remedies during pregnancy is strengthened by the lack of regulation in most countries for their marketing. However, plant-based remedies are not free of adverse reactions. Medicinal plants and herbal remedies contain substances that can be toxic to the human body and the fetus. Potential effects of indiscriminate use of medicinal plants are embryotoxicity, teratogenic, and abortifacient effects. Some plant constituents can cross the placenta and reach the fetus. Phytochemicals and their metabolites are known to induce stimulation of uterine contraction and hormone imbalance that could result in abortion. The alterations to the hormonal profile can affect conception, induce teratogenic activity, and halt the pregnancy or produce a congenital malformation. Due to the wide range of modes of action of phytochemicals, some medicinal plants may be safe to use during certain trimesters of pregnancy and harmful at other stages. This manuscript reviews available scientific information concerning potential health hazards associated with the consumption of herbal medicines during pregnancy, highlighting those herbs that should be avoided due to their potential abortifacient and/or teratogenic activity. We focused on plants that were tested by preclinical studies, and studies of these plants are summarized. Common therapeutic use of these herbs, estimated effects, toxicological effects, and animal studies of these plants is summarized. The literature reviewed suggests that consumption of the following medicinal plants should be avoided during pregnancy: Abrus precatorius, Achyranthes aspera, Ailanthus excelsa, Aloe vera, Aristolochia indica, Areca catechu, Bambusa vulgaris, Cassia occidentalis, Cicer arietinum, Cimicifuga racemose, Dolichandrone falcate, Ginkgo biloba, Hydrastis canadensis, Indigofera trifoliate, Lavandula latifolia, Maytenus ilicifolia, Momordica cymbalaria, Moringa oleifera, Musa rosacea, Oxalis corniculate, Phytolacca dodecandra, Plumeria rubra, Ricinus communis, Ruta graveolens, Stachys lavandulifolia, Senna alata, Trigonella foenum-graecum, Vitus agnus-castus, and Valeriana officinalis.


Subject(s)
Abortifacient Agents/chemistry , Medicine, Traditional/adverse effects , Phytotherapy/adverse effects , Plants, Medicinal/adverse effects , Female , Humans , Pregnancy
18.
Front Plant Sci ; 11: 572293, 2020.
Article in English | MEDLINE | ID: mdl-33312185

ABSTRACT

The development progression of medical cannabis plants includes a vegetative growth phase under long photoperiod, followed by a reproductive phase under short photoperiod. Establishment of plant architecture at the vegetative phase affects its reproduction potential under short photoperiod. Nitrogen (N) is a main component of many metabolites that are involved in central processes in plants, and is therefore a major factor governing plant development and structure. We lack information about the influence of N nutrition on medical cannabis functional-physiology and development, and plant N requirements are yet unknown. The present study therefore investigated the developmental, physiological, and chemical responses of medical cannabis plants to N supply (30, 80, 160, 240, and 320 mgL-1 N) under long photoperiod. The plants were cultivated in an environmentally controlled growing room, in pots filled with soilless media. We report that the morpho-physiological function under long photoperiod in medical cannabis is optimal at 160 mgL-1 N supply, and significantly lower under 30 mgL-1 N, with visual deficiency symptoms, and 75 and 25% reduction in plant biomass and photosynthesis rate, respectively. Nitrogen use efficiency (NUE) decreased with increasing N supply, while osmotic potential, water use efficiency, photosynthetic pigments, and total N and N-NO3 concentrations in plant tissues increased with N supply. The plant ionome was considerably affected by N supply. Concentrations of K, P, Ca, Mg, and Fe in the plant were highest under the optimal N level of 160 mgL-1 N, with differences between organs in the extent of nutrient accumulation. The majority of the nutrients tested, including P, Zn, Mn, Fe, and Cu, tended to accumulate in the roots > leaves > stem, while K and Na tended to accumulate in the stem > leaves > roots, and total N, Ca, and Mg accumulated in leaves > roots > stem. Taken together, the results demonstrate that the optimal N level for plant development and function at the vegetative growth phase is 160 mgL-1 N. Growth retardation under lower N supply (30-80 mgL-1) results from restricted availability of photosynthetic pigments, carbon fixation, and impaired water relations. Excess uptake of N under supply higher than 160 mgL-1 N, promoted physiological and developmental restrictions, by ion-specific toxicity or indirect induced restrictions of carbon fixation and energy availability.

19.
Cannabis Cannabinoid Res ; 5(3): 202-214, 2020.
Article in English | MEDLINE | ID: mdl-32923658

ABSTRACT

Introduction: Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndrome, which often includes obesity, diabetes, and dyslipidemia. Several studies in mice and humans have implicated the involvement of the gut microbiome in NAFLD. While cannabis may potentially be beneficial for treating metabolic disorders such as NAFLD, the effects of cannabis on liver diseases and gut microbiota profile are yet to be addressed. In this study, we evaluated the therapeutic effects of cannabis strains with different cannabinoid profiles on NAFLD progression. Materials and Methods: NAFLD was induced by feeding mice a high-fat/cholesterol diet (HFCD) for 6 weeks. During this period, cannabis extracts were administrated orally at a concentration of 5 mg/kg every 3 days. Profile of lipids, liver enzymes, glucose tolerance, and gene expression related to carbohydrate lipid metabolism and liver inflammation were analyzed. The effect of cannabis strains on microbiota composition in the gut was evaluated. Results: A cannabidiol (CBD)-rich extract produced an increase in inflammatory related gene expression and a less diverse microbiota profile, associated with increased fasting glucose levels in HFCD-fed mice. In contrast, mice receiving a tetrahydrocannabinol (THC)-rich extract exhibited moderate weight gain, improved glucose response curves, and a decrease in liver enzymes. Conclusions: The results of this study indicate that the administration of cannabis containing elevated levels of THC may help ameliorate symptoms of NAFLD, whereas administration of CBD-rich cannabis extracts may cause a proinflammatory effect in the liver, linked with an unfavorable change in the microbiota profile. Our preliminary data suggest that these effects are mediated by mechanisms other than increased expression of the endocannabinoid receptors cannabinoid receptor 1 (CB1) and CB2.

20.
Plants (Basel) ; 9(6)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486467

ABSTRACT

Petasites hybridus (Common butterbur) is extensively used in traditional medicine, and is currently gaining interest and popularity as a food supplement and for its medicinal properties. It contains a large number of active compounds of potential therapeutic activity, but also toxic pyrrolizidine alkaloids. Science-based information is needed to support the developing modern use of this plant, and to direct continued safe practice in traditional medicine. The present study focused on the essential oils from leaves and rhizomes of the understudied P. hybridus ssp. ochroleucus from the Balkans, and evaluated its phytochemistry and potential therapeutic activities (antimicrobial, antioxidant, anti-cholinesterase and anti-inflammatory), as well its toxicology potential (acute toxicity in insects and mice). We studied the essential oils, which are not commonly used in traditional practices, but have a potential for safe use since the toxic pyrrolizidine alkaloids, which are non-volatiles, are usually not present in the distilled essential oils. Pyrrolizidine alkaloids were indeed not detected in the essential oils; ingestion of the essential oils did not induce toxicity signs in mice, and topical application did not elicit skin irritation in humans. The essential oils had no antimicrobial properties against 20 pathogenic bacterial strains, but demonstrated good local anti-inflammatory activity in a Carrageenan-induced paw edema test. An insect toxicity test demonstrated that the leaf essential oil is an efficient insect repellent, and the demonstrated anti-cholinesterase activity suggests a potential for the treatment of neurological conditions. Isopetasin, a sesquiterpene found in plants of the genus Petasites, known to have anti-inflammatory effects, was present only in the rhizomes essential oil (3.9%), and sesquiterpene lactones concentrations were high, likely contributing to the antioxidant activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...