Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Invest Dermatol ; 144(4): 844-854.e2, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37832844

ABSTRACT

Psoriasis is an inflammatory skin disorder that is characterized by keratinocyte hyperproliferation in response to immune cell infiltration and cytokine secretion in the dermis. γδ T cells expressing the Vγ4 TCR chain are among the highest contributors of IL-17A, which is a major cytokine that drives a psoriasis flare, making Vγ4+ γδ T cells a suitable target to restrict psoriasis progression. In this study, we demonstrate that mitochondrial translation inhibition within Vγ4+ γδ T cells effectively reduced erythema, scaling, and skin thickening in a murine model of psoriatic disease. The antibiotic linezolid, which blocks mitochondrial translation, inhibited the production of mitochondrial-encoded protein cytochrome c oxidase in Vγ4+ γδ T cells and systemically reduced the frequencies of IL-17A+ Vγ4+ γδ T cells, effectively resolving IL-17A-dependent inflammation. Inhibiting mitochondrial translation could be a novel metabolic approach to interrupt IL-17A signaling in Vγ4+ T cells and reduce psoriasis-like skin pathophysiology.


Subject(s)
Dermatitis , Psoriasis , Mice , Animals , Imiquimod/adverse effects , Interleukin-17/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin , T-Lymphocytes , Inflammation/metabolism , Cytokines/metabolism , Disease Models, Animal , Receptors, Antigen, T-Cell, gamma-delta/metabolism
2.
J Mol Med (Berl) ; 101(9): 1153-1166, 2023 09.
Article in English | MEDLINE | ID: mdl-37594540

ABSTRACT

Psoriasis is a chronic inflammatory skin disease driven by the IL-23/IL-17 axis. It results from excessive activation of effector T cells, including T helper (Th) and cytotoxic T (Tc) cells, and is associated with dysfunctional regulatory T cells (Tregs). Acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme of fatty acid synthesis (FAS), directs cell fate decisions between Th17 and Tregs and thus could be a promising therapeutic target for psoriasis treatment. Here, we demonstrate that targeting ACC1 in T cells by genetic ablation ameliorates skin inflammation in an experimental model of psoriasis by limiting Th17, Tc17, Th1, and Tc1 cells in skin lesions and increasing the frequency of effector Tregs in skin-draining lymph nodes (LNs). KEY MESSAGES : ACC1 deficiency in T cells ameliorates psoriatic skin inflammation in mice. ACC1 deficiency in T cells reduces IL-17A-producing Th17/Tc17/dysfunctional Treg populations in psoriatic lesions. ACC1 deficiency in T cells restrains IFN-γ-producing Th1/Tc1 populations in psoriatic skin lesions and skin-draining LNs. ACC1 deficiency promotes activated CD44+CD25+ Tregs and effector CD62L-CD44+ Tregs under homeostasis and psoriatic conditions.


Subject(s)
Psoriasis , Skin , Animals , Mice , T-Lymphocytes, Cytotoxic , Inflammation , Acetyl-CoA Carboxylase
3.
Eur J Immunol ; 53(2): e2149691, 2023 02.
Article in English | MEDLINE | ID: mdl-36577714

ABSTRACT

The CD11c+ MHCII+ compartment within GM-CSF cultures consists of a MHCIIlow CD11bhigh population (GM-Macs) and a MHCIIhigh CD11bint population (GM-DCs), with different metabolic profiles. GM-Macs upregulate iNOS and produce nitric oxide (NO) upon TLR activation inhibiting mitochondrial respiration (OXPHOS) while promoting glycolytic metabolism in GM-DCs, which naturally do not express iNOS.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Nitric Oxide , Mice , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Nitric Oxide/metabolism , Dendritic Cells/metabolism , Cell Differentiation , Mice, Inbred C57BL
4.
Eur J Immunol ; 53(11): e2249816, 2023 11.
Article in English | MEDLINE | ID: mdl-36303448

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. This article provides protocols with top ticks and pitfalls for preparation and successful generation of mouse and human DC from different cellular sources, such as murine BM and HoxB8 cells, as well as human CD34+ cells from cord blood, BM, and peripheral blood or peripheral blood monocytes. We describe murine cDC1, cDC2, and pDC generation with Flt3L and the generation of BM-derived DC with GM-CSF. Protocols for human DC generation focus on CD34+ cell culture on OP9 cell layers for cDC1, cDC2, cDC3, and pDC subset generation and DC generation from peripheral blood monocytes (MoDC). Additional protocols include enrichment of murine DC subsets, CRISPR/Cas9 editing, and clinical grade human DC generation. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , Monocytes , Animals , Mice , Humans , Antigens, CD34 , Phenotype , Cell Differentiation
5.
Eur J Immunol ; 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563126

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.

6.
J Allergy Clin Immunol ; 148(1): 16-32, 2021 07.
Article in English | MEDLINE | ID: mdl-33966898

ABSTRACT

The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Fatty Acids/immunology , Glycolysis/immunology , Mitochondria/immunology , NAD/immunology , Polyamines/immunology , Animals , Humans
7.
Curr Opin Biotechnol ; 68: 202-212, 2021 04.
Article in English | MEDLINE | ID: mdl-33517147

ABSTRACT

Dendritic cells (DCs) are key orchestrators of immunity and tolerance. It has become evident that DC function can be influenced by cellular metabolic programs. However, conclusions from early metabolic studies using in vitro GM-CSF DC cultures fail to correlate with bona fide DC populations. Here, we discuss the existing paradigms in the DC metabolism field, focusing on the limitations of the models utilized. Furthermore, we introduce alternative models to generate DCs in vitro that better emulate DCs found in vivo. Finally, we highlight new techniques to evaluate DC metabolism at the single-cell level. The combination of these two strategies could help advance the DC metabolism field towards a more physiological understanding, which is crucial for the development of effective DC-based therapies.


Subject(s)
Dendritic Cells , Cell Differentiation
8.
Mucosal Immunol ; 14(1): 164-176, 2021 01.
Article in English | MEDLINE | ID: mdl-32355319

ABSTRACT

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacological inhibition of ACC1 by the natural compound soraphen A mirrored the anti-inflammatory effects of T-cell-specific targeting, but also enhanced susceptibility toward infection with C. rodentium. Further analysis revealed that deletion of ACC1 in RORγt+ innate lymphoid cells (ILC), but not dendritic cells or macrophages, decreased resistance to infection by interfering with IL-22 production and intestinal barrier function. Together, our study suggests pharmacological targeting of ACC1 as an effective approach for metabolic immune modulation of T-cell-driven intestinal inflammatory responses, but also reveals an important role of ACC1-mediated lipogenesis for the function of RORγt+ ILC.


Subject(s)
Biosynthetic Pathways/drug effects , Fatty Acids/biosynthesis , Immunity, Innate , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Biomarkers , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Disease Models, Animal , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
9.
Immunity ; 54(1): 68-83.e6, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33238133

ABSTRACT

While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Linezolid/therapeutic use , Mitochondria/metabolism , Peptides, Cyclic/therapeutic use , Ribosomes/metabolism , Th17 Cells/physiology , Animals , Autoimmunity/drug effects , Cell Differentiation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Targeted Therapy , Multiple Sclerosis/drug therapy , NAD/metabolism , Oxidative Phosphorylation , Peptide Elongation Factor G/genetics , Peptide Elongation Factor G/metabolism
10.
Cell Rep ; 30(12): 4052-4064.e7, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32209468

ABSTRACT

Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in infected HIF-1α-/- macrophages. L. donovani-infected HIF-1α-deficient mice develop hypertriglyceridemia and lipid accumulation in splenic and hepatic myeloid cells. Most importantly, our data demonstrate that manipulating FASN or SREBP-1c using pharmacological inhibitors significantly reduced parasite burden. As such, genetic deficiency of HIF-1α is associated with increased lipid accumulation, which results in impaired host-protective anti-leishmanial functions of myeloid cells.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leishmania donovani/physiology , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Disease Resistance , Disease Susceptibility , Genetic Variation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lipids/biosynthesis , Lipogenesis , Macrophages/parasitology , Macrophages/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/metabolism , Up-Regulation
12.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031005

ABSTRACT

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Subject(s)
Cellular Microenvironment/immunology , Dendritic Cells/immunology , Immunity, Innate , Mitochondria/immunology , Reactive Oxygen Species/immunology , Unfolded Protein Response/immunology , Animals , Cellular Microenvironment/genetics , Citric Acid Cycle/genetics , Citric Acid Cycle/immunology , Dendritic Cells/pathology , Hexokinase/genetics , Hexokinase/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Unfolded Protein Response/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/immunology
13.
Nat Commun ; 10(1): 361, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664644

ABSTRACT

Intestinal and free-living protozoa, such as Giardia lamblia, express a dense coat of variant-specific surface proteins (VSPs) on trophozoites that protects the parasite inside the host's intestine. Here we show that VSPs not only are resistant to proteolytic digestion and extreme pH and temperatures but also stimulate host innate immune responses in a TLR-4 dependent manner. We show that these properties can be exploited to both protect and adjuvant vaccine antigens for oral administration. Chimeric Virus-like Particles (VLPs) decorated with VSPs and expressing model surface antigens, such as influenza virus hemagglutinin (HA) and neuraminidase (NA), are protected from degradation and activate antigen presenting cells in vitro. Orally administered VSP-pseudotyped VLPs, but not plain VLPs, generate robust immune responses that protect mice from influenza infection and HA-expressing tumors. This versatile vaccine platform has the attributes to meet the ultimate challenge of generating safe, stable and efficient oral vaccines.


Subject(s)
Giardia lamblia/chemistry , Influenza Vaccines/immunology , Membrane Proteins/immunology , Orthomyxoviridae Infections/prevention & control , Protozoan Proteins/immunology , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic , Administration, Oral , Animals , Antigen Presentation/drug effects , Bioengineering/methods , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Gene Expression , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Innate/drug effects , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Male , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neuraminidase/genetics , Neuraminidase/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Protein Stability , Protozoan Proteins/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Trophozoites/chemistry , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics
14.
Cell Metab ; 28(3): 490-503.e7, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30043752

ABSTRACT

Long-chain fatty acid (LCFA) oxidation has been shown to play an important role in interleukin-4 (IL-4)-mediated macrophage polarization (M(IL-4)). However, many of these conclusions are based on the inhibition of carnitine palmitoyltransferase-1 with high concentrations of etomoxir that far exceed what is required to inhibit enzyme activity (EC90 < 3 µM). We employ genetic and pharmacologic models to demonstrate that LCFA oxidation is largely dispensable for IL-4-driven polarization. Unexpectedly, high concentrations of etomoxir retained the ability to disrupt M(IL-4) polarization in the absence of Cpt1a or Cpt2 expression. Although excess etomoxir inhibits the adenine nucleotide translocase, oxidative phosphorylation is surprisingly dispensable for M(IL-4). Instead, the block in polarization was traced to depletion of intracellular free coenzyme A (CoA), likely resulting from conversion of the pro-drug etomoxir into active etomoxiryl CoA. These studies help explain the effect(s) of excess etomoxir on immune cells and reveal an unappreciated role for CoA metabolism in macrophage polarization.


Subject(s)
Acyl Coenzyme A/physiology , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Homeostasis/drug effects , Macrophages , Mitochondria , 3T3 Cells , A549 Cells , Animals , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , HCT116 Cells , Hep G2 Cells , Humans , Interleukin-4/metabolism , Liver/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Oxidative Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley
15.
Cell Metab ; 28(3): 504-515.e7, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30043753

ABSTRACT

T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.


Subject(s)
Acetyl-CoA Carboxylase/physiology , CD8-Positive T-Lymphocytes/metabolism , Carnitine O-Palmitoyltransferase/physiology , Epoxy Compounds/pharmacology , Fatty Acids/metabolism , Immunologic Memory/drug effects , Mitochondria/metabolism , T-Lymphocytes, Regulatory/drug effects , Acetyl-CoA Carboxylase/genetics , Animals , Carnitine O-Palmitoyltransferase/genetics , Cell Differentiation/drug effects , Cells, Cultured , Child , Child, Preschool , Female , Gene Knockout Techniques , Humans , Lymphocyte Activation/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , T-Lymphocytes, Regulatory/metabolism
16.
Front Immunol ; 9: 471, 2018.
Article in English | MEDLINE | ID: mdl-29662482

ABSTRACT

Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.


Subject(s)
Antigens, Bacterial/immunology , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Immunity, Cellular , Lectins, C-Type/immunology , Mycobacterium tuberculosis/immunology , Receptors, Cell Surface/immunology , Th1 Cells/immunology , Tuberculosis Vaccines/immunology , Animals , Cytokines/immunology , Dendritic Cells/pathology , Humans , Mice , Th1 Cells/pathology , Tuberculosis/immunology , Tuberculosis/prevention & control
17.
Immunol Rev ; 283(1): 213-231, 2018 05.
Article in English | MEDLINE | ID: mdl-29664569

ABSTRACT

CD8+ T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8+ T cells, while naive and memory (Tmem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8+ Tmem cell development. Moreover, it has been proposed that CD8+ Tmem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8+ T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8+ Tmem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Fatty Acids/metabolism , Immunity, Cellular , Lipid Metabolism , Alcohol Oxidoreductases/metabolism , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Energy Metabolism , Humans , Lymphocyte Activation/immunology , Mitochondria/metabolism , Signal Transduction
18.
Front Immunol ; 9: 495, 2018.
Article in English | MEDLINE | ID: mdl-29675017

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.


Subject(s)
Dendritic Cells/immunology , Fatty Acids/immunology , Immunity, Innate , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Th1 Cells/immunology , Tuberculosis/immunology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/immunology , Animals , Dendritic Cells/microbiology , Dendritic Cells/pathology , Fatty Acids/genetics , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/genetics , Th1 Cells/microbiology , Th1 Cells/pathology , Tuberculosis/genetics , Tuberculosis/pathology
19.
Infect Immun ; 86(6)2018 06.
Article in English | MEDLINE | ID: mdl-29555679

ABSTRACT

Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate Giardia infections, with gerbils (Meriones unguiculatus) being the most valuable model due to their high susceptibility to Giardia infection, abundant shedding of cysts, and pathophysiological alterations and signs of disease similar to those observed in humans. Here, we report cytokine and antibody profiles both during the course of Giardia infection in gerbils and after immunization with a novel oral vaccine comprising a mixture of purified variant-specific surface proteins (VSPs). Transcript levels of representative cytokines of different immune profiles as well as macro- and microtissue alterations were assessed in Peyer's patches, mesenteric lymph nodes, and spleens. During infection, cytokine responses showed a biphasic profile: an early induction of Th1 (gamma interferon [IFN-γ], interleukin-1ß [IL-1ß], IL-6, and tumor necrosis factor [TNF]), Th17 (IL-17), and Th2 (IL-4) cytokines, together with intestinal alterations typical of inflammation, followed by a shift toward a predominant Th2 (IL-5) response, likely associated with a counterregulatory mechanism. Conversely, immunization with an oral vaccine comprising the entire repertoire of VSPs specifically showed high levels of IL-17, IL-6, IL-4, and IL-5, without obvious signs of inflammation. Both immunized and infected animals developed local (intestinal secretory IgA [S-IgA]) and systemic (serum IgG) humoral immune responses against VSPs; however, only infected animals showed evident signs of giardiasis. This is the first comprehensive report of cytokine expression and anti-Giardia antibody production during infection and VSP vaccination in gerbils, a reliable model of the human disease.


Subject(s)
Giardia lamblia/genetics , Giardiasis/prevention & control , Membrane Proteins/genetics , Protozoan Vaccines/immunology , Animals , Female , Gerbillinae , Giardiasis/parasitology , Humans , Male , Membrane Proteins/immunology , Organisms, Genetically Modified , Specific Pathogen-Free Organisms , Vaccination
20.
Semin Immunopathol ; 39(2): 177-198, 2017 02.
Article in English | MEDLINE | ID: mdl-27921148

ABSTRACT

Dendritic cells (DCs) determine the outcome of the immune response based on signals they receive from the environment. Presentation of antigen under various contexts can lead to activation and differentiation of T cells for immunity or dampening of immune responses by establishing tolerance, primarily through the priming of regulatory T cells. Infections, inflammation and normal cellular interactions shape DC responses through direct contact or via cytokine signaling. Although it is widely accepted that DCs sense microbial components through pattern recognition receptors (PRRs), increasing evidence advocates for the existence of a set of signals that can profoundly shape DC function via PRR-independent pathways. This diverse group of host- or commensal-derived metabolites represents a newly appreciated code from which DCs can interpret environmental cues. In this review, we discuss the existing information on the effect of some of the most studied metabolites on DC function, together with the implications this may have in immune-mediated diseases.


Subject(s)
Cellular Microenvironment , Dendritic Cells/immunology , Dendritic Cells/metabolism , Metabolome , Animals , Biomarkers , Dendritic Cells/classification , Dendritic Cells/cytology , Energy Metabolism , Humans , Organ Specificity/immunology , Phenotype , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL