Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Chem Inf Model ; 64(4): 1251-1260, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38335044

ABSTRACT

Virtual screening of large-scale chemical libraries has become increasingly useful for identifying high-quality candidates for drug discovery. While it is possible to exhaustively screen chemical spaces that number on the order of billions, indirect combinatorial approaches are needed to efficiently navigate larger, synthon-based virtual spaces. We describe Shape-Aware Synthon Search (SASS), a synthon-based virtual screening method that carries out shape similarity searches in the synthon space instead of the enumerated product space. SASS can replicate results from exhaustive searches in ultralarge, combinatorial spaces with high recall on a variety of query molecules while only scoring a small subspace of possible enumerated products, thereby significantly accelerating large-scale, shape-based virtual screening.


Subject(s)
Drug Discovery , Small Molecule Libraries , Drug Discovery/methods , Small Molecule Libraries/chemistry
2.
Nat Cancer ; 4(6): 812-828, 2023 06.
Article in English | MEDLINE | ID: mdl-37277530

ABSTRACT

The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Precision Medicine , Transcription Factors/metabolism , Signal Transduction
3.
Nat Commun ; 13(1): 6447, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307407

ABSTRACT

With the ever-increasing number of synthesis-on-demand compounds for drug lead discovery, there is a great need for efficient search technologies. We present the successful application of a virtual screening method that combines two advances: (1) it avoids full library enumeration (2) products are evaluated by molecular docking, leveraging protein structural information. Crucially, these advances enable a structure-based technique that can efficiently explore libraries with billions of molecules and beyond. We apply this method to identify inhibitors of ROCK1 from almost one billion commercially available compounds. Out of 69 purchased compounds, 27 (39%) have Ki values < 10 µM. X-ray structures of two leads confirm their docked poses. This approach to docking scales roughly with the number of reagents that span a chemical space and is therefore multiple orders of magnitude faster than traditional docking.


Subject(s)
Protein Kinase Inhibitors , Proteins , Molecular Docking Simulation , Ligands , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding
4.
Cell Rep ; 31(12): 107809, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579935

ABSTRACT

The transcriptional enhanced associate domain (TEAD) family of transcription factors serves as the receptors for the downstream effectors of the Hippo pathway, YAP and TAZ, to upregulate the expression of multiple genes involved in cellular proliferation and survival. Recent work identified TEAD S-palmitoylation as critical for protein stability and activity as the lipid tail extends into a hydrophobic core of the protein. Here, we report the identification and characterization of a potent small molecule that binds the TEAD lipid pocket (LP) and disrupts TEAD S-palmitoylation. Using a variety of biochemical, structural, and cellular methods, we uncover that TEAD S-palmitoylation functions as a TEAD homeostatic protein level checkpoint and that dysregulation of this lipidation affects TEAD transcriptional activity in a dominant-negative manner. Furthermore, we demonstrate that targeting the TEAD LP is a promising therapeutic strategy for modulating the Hippo pathway, showing tumor stasis in a mouse xenograft model.


Subject(s)
Lipids/chemistry , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Small Molecule Libraries/pharmacology , Transcription Factors/metabolism , Animals , Cell Line , Crystallography, X-Ray , Humans , Lipoylation , Mice , Repressor Proteins/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Transcription Factors/agonists , Xenograft Model Antitumor Assays
5.
Drug Metab Dispos ; 48(6): 521-527, 2020 06.
Article in English | MEDLINE | ID: mdl-32234735

ABSTRACT

Two novel homodimer metabolites were identified in rat samples collected during the in vivo study of GDC-0994. In this study, we investigated the mechanism of the formation of these metabolites. We generated and isolated the dimer metabolites using a biomimetic oxidation system for NMR structure elucidation to identify a symmetric dimer formed via carbon-carbon bond between two pyrazoles and an asymmetric dimer formed via an aminopyrazole-nitrogen to pyrazole-carbon bond. In vitro experiments demonstrated formation of these dimers was catalyzed by cytochrome P450 enzymes (P450s) with CYP3A4/5 being the most efficient. Using density functional theory, we determined these metabolites share a mechanism of formation, initiated by an N-H hydrogen atom abstraction by the catalytically active iron-oxo of P450s. Molecular modeling studies also show these dimer metabolites fit in the CYP3A4 binding site in low energy conformations with minimal protein rearrangement. Collectively, the results of these experiments suggest that formation of these two homodimer metabolites is mediated by CYP3A, likely involving activation of two GDC-0994 molecules by a single P450 enzyme and proceeding through a radical coupling mechanism. SIGNIFICANCE STATEMENT: These studies identified structures and enzymology for two distinct homodimer metabolites and indicate a novel biotransformation reaction mediated by CYP3A. In it, two molecules may bind within the active site and combine through radical coupling. The mechanism of dimerization was elucidated using density functional theory computations and supported by molecular modeling.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Pyridones/chemistry , Pyrimidines/chemistry , Animals , Binding Sites , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/ultrastructure , Dimerization , Dogs , Female , Humans , Macaca fascicularis , Male , Mice , Microsomes, Liver/enzymology , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Pyridones/pharmacokinetics , Pyrimidines/pharmacokinetics , Rats
6.
J Chem Inf Model ; 54(2): 462-9, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24432790

ABSTRACT

Water is the natural medium of molecules in the cell and plays an important role in protein structure, function and interaction with small molecule ligands. However, the widely used molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method for binding energy calculation does not explicitly take account of water molecules that mediate key protein-ligand interactions. We have developed a protocol to include water molecules that mediate ligand-protein interactions as part of the protein structure in calculation of MM/PBSA binding energies (a method we refer to as water-MM/PBSA) for a series of JNK3 kinase inhibitors. Improved correlation between water-MM/PBSA binding energies and experimental IC50 values was obtained compared to that obtained from classical MM/PBSA binding energy. This improved correlation was further validated using sets of neuraminidase and avidin inhibitors. The observed improvement, however, appears to be limited to systems in which there are water-mediated ligand-protein hydrogen bond interactions. We conclude that the water-MM/PBSA method performs better than classical MM/PBSA in predicting binding affinities when water molecules play a direct role in mediating ligand-protein hydrogen bond interactions.


Subject(s)
Mitogen-Activated Protein Kinase 10/chemistry , Molecular Dynamics Simulation , Water/chemistry , Ligands , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/metabolism , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Thermodynamics
7.
Biochem Biophys Res Commun ; 441(2): 291-6, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24070613

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting millions of people. ß-Secretase-1 (BACE-1), an enzyme involved in the processing of the amyloid precursor protein (APP) to form Aß, is a well validated target for AD. Herein, the authors characterize 10 randomly selected hydroxyethylamine (HEA) BACE-1 inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR). Rate constants of association (ka) measured at 25 °C ranged from a low of 2.42×10(4) M(-1) s(-1) to the highest value of 8.3×10(5) M(-1) s(-1). Rate constants of dissociation (kd) ranged from 1.09×10(-4) s(-1) (corresponding to a residence time of close to three hours), to the fastest of 0.028 s(-1). Three compounds were selected for further thermodynamic analysis where it was shown that equilibrium binding was enthalpy driven while unfavorable entropy of binding was observed. Structural analysis revealed that upon ligand binding, the BACE-1flap folds down over the bound ligand causing an induced fit. The maximal difference between alpha carbon positions in the open and closed conformations of the flap was over 5 Å. Thus the negative entropy of binding determined using SPR analysis was consistent with an induced fit observed by structural analysis.


Subject(s)
Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Ethanolamines , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Proteases/antagonists & inhibitors , Aspartic Acid Proteases/chemistry , Enzymes, Immobilized/antagonists & inhibitors , Enzymes, Immobilized/chemistry , Humans , Kinetics , Protease Inhibitors/chemistry , Protein Conformation , Thermodynamics
8.
PLoS One ; 8(7): e66879, 2013.
Article in English | MEDLINE | ID: mdl-23861750

ABSTRACT

Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin. As a prerequisite for the screen, a large number of SPR tests were performed to characterize and validate the active form of Parkin. A set of compounds was designed and used to define optimal SPR assay conditions for this fragment screen. Using these conditions, more than 5000 pre-selected fragments from our in-house library were screened for binding to Parkin. Additionally, all fragments were simultaneously screened for binding to two off target proteins to exclude promiscuous binding compounds. A low hit rate was observed that is in line with hit rates usually obtained by other HTS screening assays. All hits were further tested in dose responses on the target protein by SPR for confirmation before channeling the hits into Nuclear Magnetic Resonance (NMR) and other hit-confirmation assays.


Subject(s)
High-Throughput Screening Assays , Peptide Fragments/chemistry , Surface Plasmon Resonance , Ubiquitin-Protein Ligases/chemistry , Dithiothreitol/chemistry , Dithiothreitol/metabolism , Drug Discovery , High-Throughput Screening Assays/methods , Kinetics , Ligands , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/metabolism , Protein Binding , Reducing Agents/chemistry , Reducing Agents/metabolism , Surface Plasmon Resonance/methods , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
9.
J Chem Inf Model ; 53(8): 2065-72, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23845109

ABSTRACT

Does a single molecular trajectory provide an adequate sample conformational space? Our calculations indicate that for Molecular Mechanics--Poisson-Boltzmann Surface Area (MM-PBSA) measurement of protein ligand binding, a single molecular dynamics trajectory does not provide a representative sampling of phase space. For a single trajectory, the binding energy obtained by averaging over a number of molecular dynamics frames in an equilibrated system will converge after an adequate simulation time. A separate trajectory with nearly identical starting coordinates (1% randomly perturbed by 0.001 Å), however, can lead to a significantly different calculated binding energy. Thus, even though the calculated energy converges for a single molecular dynamics run, the variation across separate runs implies that a single run inadequately samples the system. The divergence in the trajectories is reflected in the individual energy components, such as the van der Waals and the electrostatics terms. These results indicate that the trajectories sample different conformations that are not in rapid exchange. Extending the length of the dynamics simulation does not resolve the energy differences observed between different trajectories. By averaging over multiple simulations, each with a nearly equivalent starting structure, we find the standard deviation in the calculated binding energy to be ∼1.3 kcal/mol. The work presented here indicates that combining MM-PBSA with multiple samples of the initial starting coordinates will produce more precise and accurate estimates of protein/ligand affinity.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Proteins/metabolism , Ligands , Nonlinear Dynamics , Poisson Distribution , Protein Binding , Protein Conformation , Reproducibility of Results , Temperature , Thermodynamics
10.
ChemMedChem ; 8(8): 1295-313, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23794260

ABSTRACT

Polo-like kinase-2 (Plk-2) has been implicated as the dominant kinase involved in the phosphorylation of α-synuclein in Lewy bodies, which are one of the hallmarks of Parkinson's disease neuropathology. Potent, selective, brain-penetrant inhibitors of Plk-2 were obtained from a structure-guided drug discovery approach driven by the first reported Plk-2-inhibitor complexes. The best of these compounds showed excellent isoform and kinome-wide selectivity, with physicochemical properties sufficient to interrogate the role of Plk-2 inhibition in vivo. One such compound significantly decreased phosphorylation of α-synuclein in rat brain upon oral administration and represents a useful probe for future studies of this therapeutic avenue toward the potential treatment of Parkinson's disease.


Subject(s)
Brain/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , alpha-Synuclein/metabolism , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Female , HEK293 Cells , Half-Life , Humans , Male , Mice , Molecular Dynamics Simulation , Phosphorylation/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley
12.
Bioorg Med Chem Lett ; 23(7): 2181-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23465612

ABSTRACT

The structure-activity relationship of a series of dihydroisoquinoline BACE-1 inhibitors is described. Application of structure-based design to screening hit 1 yielded sub-micromolar inhibitors. Replacement of the carboxylic acid of 1 was guided by X-ray crystallography, which allowed the replacement of a key water-mediated hydrogen bond. This work culminated in compounds such as 31, which possess good BACE-1 potency, excellent permeability and a low P-gp efflux ratio.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid/chemistry , Drug Design , Isoquinolines/pharmacology , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Catalysis , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 23(9): 2743-9, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23522834

ABSTRACT

Polo-like kinase-2 (Plk-2) is a potential therapeutic target for Parkinson's disease and this Letter describes the SAR of a series of dihydropteridinone based Plk-2 inhibitors. By optimizing both the N-8 substituent and the biaryl region of the inhibitors we obtained single digit nanomolar compounds such as 37 with excellent selectivity for Plk-2 over Plk-1. When dosed orally in rats, compound 37 demonstrated a 41-45% reduction of pS129-α-synuclein levels in the cerebral cortex.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Brain/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , HEK293 Cells , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pteridines/chemical synthesis , Pteridines/chemistry , Pteridines/pharmacokinetics , Rats , Structure-Activity Relationship , Polo-Like Kinase 1
14.
Invest New Drugs ; 31(3): 576-86, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23179338

ABSTRACT

Deletions or mutations in the tumor suppressor gene DPC4 (deleted in pancreatic carcinoma locus 4) are common in colon and pancreatic cancers. Using the Target-related Affinity Profiling (TRAP) chemical library screening method, a novel agent, UA8967, was selected for further studies because it showed greater potency in DPC4-deleted HCT-116 colon cancer cells. Cytotoxicity studies in six pancreatic cancer cell lines (MiaPaca-2, Panc-1, BxPC3, CF-PAC1, AsPC1, and T3M4), one normal human pancreatic ductal epithelial line (HPDE-6) and the HCT-116 DPC4(+/+) and HCT-116 DPC4(-/-) colon cancer cells showed IC50s ranging from 12-61 µM for exposure times of 72 h. Analysis of schedule dependence showed no advantage for long drug exposure times. There was also no selective inhibition of DNA, RNA or protein synthesis after exposure to UA8967. At 24-48 h, there was an accumulation of cells in G0/G1-phase and a proportionate reduction in S-phase cells. Within 1-6 h of exposure, cells were found to undergo an autophagic response, followed at 24 h by a low level of caspase-independent apoptosis with some necrosis. Because of the relatively non-specific mechanistic effects of UA8967, plasma membrane viability was evaluated using uptake of trypan blue and Sytox® Green dyes, and leakage of LDH. There was a dose dependent increase in Sytox® Green staining, trypan blue uptake and LDH leakage with increasing concentrations of UA8967, suggesting that UA8967 is affecting the plasma membrane. The DPC4(-/-) cells were more sensitive to UA8967 but not to DMSO, suggesting a drug-specific effect on cell membrane integrity.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Piperazines/pharmacology , Smad4 Protein/genetics , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Cell Membrane/drug effects , Cell Proliferation/drug effects , Humans , L-Lactate Dehydrogenase/metabolism , Membrane Potential, Mitochondrial/drug effects
15.
J Med Chem ; 54(15): 5403-13, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21692479

ABSTRACT

The metabolism of poly(ADP-ribose) (PAR) in response to DNA strand breaks, which involves the concerted activities of poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolase (PARG), modulates cell recovery or cell death depending upon the level of DNA damage. While PARP inhibitors show high promise in clinical trials because of their low toxicity and selectivity for BRCA related cancers, evaluation of the therapeutic potential of PARG is limited by the lack of well-validated cell permeable inhibitors. In this study, target-related affinity profiling (TRAP), an alternative to high-throughput screening, was used to identify a number of druglike compounds from several chemical classes that demonstrated PARG inhibition in the low-micromolar range. A number of analogues of one of the most active chemotypes were synthesized to explore the structure-activity relationship (SAR) for that series. This led to the discovery of a putative pharmacophore for PARG inhibition that contains a modified salicylanilide structure. Interestingly, these compounds also inhibit PARP-1, indicating strong homology in the active sites of PARG and PARP-1 and raising a new challenge for development of PARG specific inhibitors. The cellular activity of a lead inhibitor was demonstrated by the inhibition of both PARP and PARG activity in squamous cell carcinoma cells, although preferential inhibition of PARG relative to PARP was observed. The ability of inhibitors to modulate PAR metabolism via simultaneous effects on PARPs and PARG may represent a new approach for therapeutic development.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Salicylanilides/pharmacology , Carcinoma, Squamous Cell/metabolism , Enzyme Inhibitors/chemical synthesis , Humans , Poly(ADP-ribose) Polymerase Inhibitors , Salicylanilides/chemical synthesis , Structure-Activity Relationship
16.
Curr Top Med Chem ; 7(15): 1514-24, 2007.
Article in English | MEDLINE | ID: mdl-17897038

ABSTRACT

We review recent advances in computer modeling of molecular shape in drug discovery. We summarize the ways of representing shape computationally, discuss the various means of aligning molecules and shapes, consider the various ways of scoring similarity of shapes, and describe the ways in which these shapes can be used to construct molecular descriptors. Finally, we evaluate the success of these methods to date, suggest when they are best applied, and provide our recommendations for the direction of future work.


Subject(s)
Computer Simulation , Drug Design , Models, Molecular , Structure-Activity Relationship
17.
Curr Top Med Chem ; 5(4): 371-81, 2005.
Article in English | MEDLINE | ID: mdl-15892680

ABSTRACT

Target-Related Affinity Profiling (TRAP) is a computational drug discovery technology that is based on 'affinity fingerprints', which are molecular descriptors derived from the protein binding preferences of small molecules. The underlying concepts of TRAP are reviewed. Affinity fingerprints are compared to molecular descriptors derived from chemical structures and shown to be a useful alternative for lead discovery. The TRAP screening process is described and two example applications are presented: I. the discovery of novel inhibitors of human intestinal carboxylesterase, and II. the discovery of novel inhibitors of cyclooxygenase-1 through the use of the affinity fingerprints of known cyclooxygenase-1 inhibitors. A summary of the complementary advantages of TRAP screening technology compared to traditional approaches to drug lead discovery concludes the review.


Subject(s)
Drug Design , Receptors, Drug/chemistry , Animals , Carboxylic Ester Hydrolases/antagonists & inhibitors , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Humans , Molecular Biology , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Binding
18.
J Med Chem ; 48(8): 2906-15, 2005 Apr 21.
Article in English | MEDLINE | ID: mdl-15828829

ABSTRACT

Carboxylesterases (CE) are ubiquitous enzymes responsible for the metabolism of xenobiotics. Because the structural and amino acid homology among esterases of different classes, the identification of selective inhibitors of these proteins has proved problematic. Using Telik's target-related affinity profiling (TRAP) technology, we have identified a class of compounds based on benzil (1,2-diphenylethane-1,2-dione) that are potent CE inhibitors, with K(i) values in the low nanomolar range. Benzil and 30 analogues demonstrated selective inhibition of CEs, with no inhibitory activity toward human acetylcholinesterase or butyrylcholinesterase. Analysis of structurally related compounds indicated that the ethane-1,2-dione moiety was essential for enzyme inhibition and that potency was dependent on the presence of, and substitution within, the benzene ring. 3D-QSAR analyses of these benzil analogues for three different mammalian CEs demonstrated excellent correlations of observed versus predicted K(i) (r(2) > 0.91), with cross-validation coefficients (q(2)) of 0.9. Overall, these results suggest that selective inhibitors of CEs with potential for use in clinical applications can be designed.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Phenylglyoxal/analogs & derivatives , Phenylglyoxal/chemistry , Acetylcholinesterase/chemistry , Animals , Butyrylcholinesterase/chemistry , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/chemistry , Cholinesterase Inhibitors/chemistry , Databases, Factual , Humans , Intestines/enzymology , Models, Molecular , Phenylglyoxal/chemical synthesis , Quantitative Structure-Activity Relationship , Rats , Structure-Activity Relationship , Umbelliferones/chemistry
19.
J Med Chem ; 47(20): 4875-80, 2004 Sep 23.
Article in English | MEDLINE | ID: mdl-15369391

ABSTRACT

We used protein affinity fingerprints to discover structurally novel inhibitors of cyclooxygenase-1 (COX-1) by screening a selected number of compounds, thus providing an alternative to extensive screening. From the affinity fingerprints of 19 known COX-1 inhibitors, a computational model for COX-1 inhibition was constructed and used to select candidate inhibitors from our compound library to be tested in the COX-1 assay. Subsequent refinement of the model by including affinity fingerprints of inactive compounds identified three molecules that were more potent than ibuprofen, a commonly used COX-1 inhibitor. These compounds are structurally distinct from those used to build the model and were discovered by testing only 62 library compounds. The discovery of these leads demonstrates the efficiency with which affinity fingerprints can identify novel bioactive chemotypes from known drugs.


Subject(s)
Combinatorial Chemistry Techniques/methods , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Models, Theoretical , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 1 , Drug Design , Drug Evaluation, Preclinical/methods , Ibuprofen/chemistry , Ibuprofen/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Prospective Studies , Prostaglandin-Endoperoxide Synthases , Quantitative Structure-Activity Relationship
20.
Mol Pharmacol ; 65(6): 1336-43, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15155827

ABSTRACT

The dose-limiting toxicity of the highly effective anticancer agent 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (irinotecan; CPT-11) is delayed diarrhea. This is thought to be caused by either bacteria-mediated hydrolysis of the glucuronide conjugate of the active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) or direct conversion of CPT-11 to SN-38 by carboxylesterases (CE) in the small intestine. After drug administration, a very high level of CPT-11 is present in the bile; this is deposited into the duodenum, the region of the gut with the highest levels of CE activity. Hence, it is likely that direct conversion of the drug to SN-38 is partially responsible for the diarrhea associated with this agent. In an attempt to ameliorate this toxicity, we have applied Target-Related Affinity Profiling to identify novel CE inhibitors that are selective inhibitors of the human intestinal enzyme (hiCE). Seven inhibitors, all sulfonamide derivatives, demonstrated greater than 200-fold selectivity for hiCE compared with the human liver CE hCE1, and none was an inhibitor of human acetylcholinesterase or butyrylcholinesterase. Quantitative structure-activity relationship (QSAR) analysis demonstrated excellent correlations with the predicted versus experimental Ki values (r2 = 0.944) for hiCE. Additionally, design and synthesis of a tetrafluorine-substituted sulfonamide analog, which QSAR indicated would demonstrate improved inhibition of hiCE, validated the computer predictive analyses. These and other phenyl-substituted sulfonamides compounds are regarded as lead compounds for the development of effective, selective CE inhibitors for clinical applications.


Subject(s)
Camptothecin/analogs & derivatives , Camptothecin/adverse effects , Carboxylic Ester Hydrolases/antagonists & inhibitors , Diarrhea/drug therapy , Enzyme Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/metabolism , Camptothecin/metabolism , Diarrhea/chemically induced , Enzyme Inhibitors/chemistry , Humans , Intestines/enzymology , Irinotecan , Models, Molecular , Quantitative Structure-Activity Relationship , Rabbits , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...