Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Imaging Radiat Sci ; 55(4): 101728, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39153404

ABSTRACT

INTRODUCTION: This work reports on a systematic approach to select MRI sequences, quantify inter-observer image registration variation and determine patient positioning for the clinical implementation of MR-guided adaptive radiotherapy (MRgRT) in patients with oropharyngeal (H&N) and lung cancer. METHODS: A total of 30 participants (N=10 H&N and N=10 lung cancer patients and N=10 healthy participants) were scanned on the Elekta Unity Magnetic Resonance Linear Accelerator (MRL). Participant experience questionnaires were used to determine the most appropriate positioning device for lung treatments and tolerability of H&N immobilization devices within the confined MR Linac environment. Visual guided assessments (VGAs) completed by three observers (one oncologist and two radiographers) were used to determine the most suitable tissue weighting (using vendor-provided 3D T1w and T2w sequences) for online image registration. Offline MRI to CT and MRI to MRI rigid registrations were undertaken by nine radiographers using bony and soft tissue matching. Single-factor ANOVA and paired t-tests were utilized to determine the interobserver variation. RESULTS: Based on oncologist and patient feedback, lung cancer patients would be treated in a vac-bag with their arms by their sides, while H&N cancer patients would be immobilized using a 5-point fixation device and 5-point personalized thermoplastic shell. There was no clear preference for T1w or T2w images in the H&N cohort. However, observers preferred T2w sequences for tumour and organ at risk (OAR) visualization in the lung images. When a bony match was conducted, single-factor ANOVA tests showed no statistically significant differences between all H&N image registration types (p=0.09). For the soft-tissue registrations, T1w-CT and T1w-T1w registrations showed a statistically significant (p=0.01) reduction in inter-observer variability over T2w-CT registrations. Paired t-tests showed no statistically significant differences for bony or soft tissue matches using T1w or T2w sequences to the planning CT in the lung cohorts (p=0.63 and p=0.52, respectively). CONCLUSION: We describe the systematic approach to the selection of strategies for imaging, immobilization, and online image registration we used for H&N and lung cancer treatments on the MRL. This has facilitated the selection of the most appropriate adaptive MRgRT strategies for treating these sites at our institution.

2.
Med Phys ; 47(6): 2506-2515, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32145087

ABSTRACT

PURPOSE: Dose deposition around unplanned air cavities during magnetic resonance-guided radiotherapy (MRgRT) is influenced by the electron return effect (ERE). This is clinically relevant for gas forming close to or inside organs at risk (OARs) that lie in the path of a single beam, for example, intestinal track during pelvic treatment. This work aims to verify Monte Carlo calculations that predict the dosimetric effects of ERE around air cavities. For this, we use GafChromic EBT3 film inside poly-methyl methacrylate (PMMA) -air phantoms. METHOD: Four PMMA phantoms were produced. Three of the phantoms contained centrally located spherical air cavities (0.5, 3.5, 7.5 cm diameter), and one phantom contained no air. The phantoms were split to sandwich GafChromic EBT3 film in the center. The phantoms were irradiated on an Elekta Unity system using a single 10 × 10 cm2 7-MV photon beam under the influence of a 1.5-T transverse magnetic field. The measurements were replicated using the Elekta Monaco treatment planning system (TPS). Gamma analysis with pass criteria 3%/3 mm was used to compare the measured and calculated dose distributions. We also consider 3%/2 mm, 2%/3 mm, and 2%/2 mm pass criteria for interest. RESULTS: The gamma analysis showed that >95% of the points agreed between the TPS-calculated and measured dose distributions, using 3%/3 mm criteria. The phantom containing the largest air cavity had the lowest agreement, with most of the disagreeing points lying inside the air cavity (dose to air region). CONCLUSIONS: The dose effects due to ERE around spherical air cavities are being calculated in the TPS with sufficient accuracy for clinical use.


Subject(s)
Electrons , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL