Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(7): 3667-3681, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38321961

ABSTRACT

The Wnt/ß-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/ß-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that ß-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents ß-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, ß-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via ß-Catenin protein stabilization. Altogether, by inscribing LSD1 and ß-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/ß-Catenin signaling and LSD1 on stem cell fate.


Subject(s)
Cell Self Renewal , Histone Demethylases , Wnt Signaling Pathway , beta Catenin , Animals , Histone Demethylases/metabolism , Histone Demethylases/genetics , beta Catenin/metabolism , beta Catenin/genetics , Mice , Cell Self Renewal/genetics , Cell Nucleus/metabolism , Spindle Apparatus/metabolism , Cell Differentiation/genetics , Humans , Stem Cells/metabolism , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL