Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Gels ; 9(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38131971

ABSTRACT

Polydimethylsiloxane (PDMS) organogel sponges were prepared and studied in order to understand the role of pore size in an elastomeric network on the ability to uptake and release organic solvents. PDMS organogel sponges have been produced according to sugar leaching techniques by adding two sugar templates of different forms and grain sizes (a sugar cube template and a powdered sugar template), in order to obtain materials differing in porosity, pore size distribution, and solvent absorption and liquid retention capability. These materials were compared to PDMS organogel slabs that do not contain pores. The sponges were characterized by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and compared with PDMS slabs that do not contain pores. Scanning electron microscopy (SEM) provided information about their morphology. X-ray micro-tomography (XMT) allowed us to ascertain how the form of the sugar templating agent influences the porosity of the systems: when templated with sugar cubes, the porosity was 77% and the mean size of the pores was ca. 300 µm; when templated with powdered sugar, the porosity decreased to ca. 10% and the mean pore size was reduced to ca. 75 µm. These materials, porous organic polymers (POPs), can absorb many solvents in different proportions as a function of their polarity. Absorption capacity, as measured by swelling with eight solvents covering a wide range of polarities, was investigated. Rheology data established that solvent absorption did not have an appreciable impact on the gel-like properties of the sponges, suggesting their potential for applications in cultural heritage conservation. Application tests were conducted on the surfaces of two different lab mock-ups that simulate real painted works of art. They demonstrated further that PDMS sponges are a potential innovative support for controlled and selective cleaning of works of art surfaces.

2.
Anal Chem ; 94(7): 3103-3110, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35138807

ABSTRACT

Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (µ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (µ-FTIR ≈ 102 µm3, O-PTIR ≈ 10-1 µm3, PTIR ≈ 10-5 µm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 µm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.

3.
Anal Chem ; 92(7): 4935-4942, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32077688

ABSTRACT

Materials in the paint layers of an early 16th-century painted and glazed terracotta sculpture by Giovanni della Robbia, Pietà, were identified. The presence of the rare lead chloride salts cotunnite (PbCl2) and challacolloite (KPb2Cl5) was confirmed using Raman spectroscopy and electron backscatter diffraction. The well-formed habit of large crystals of challacolloite indicates slow growth from solution. The stability and potential pathways for the in situ formation of lead chloride compounds are discussed. The presence of lead chloride phases in the Pietà indicates the conditions of high chloride ion concentrations (i.e., activities) and/or low pH led to the alteration of the pigment lead white (hydrocerussite, 2PbCO3·Pb(OH)2). This work highlights the role of ion transport in the alteration of materials in cultural heritage objects, emphasizes the importance of considering the role of treatments and environmental factors in changes in materials, and reinforces our awareness of the ongoing chemistry occurring in works of art.

4.
Angew Chem Int Ed Engl ; 58(34): 11652-11656, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31226237

ABSTRACT

Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with µ-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.

5.
ACS Appl Mater Interfaces ; 9(33): 28069-28078, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28787129

ABSTRACT

We have developed soft, peelable organogels from 40% hydrolyzed poly(vinyl acetate) (40PVAc) and benzene-1,4-diboronic acid (BDBA). The organic liquids gelated include dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 2-ethoxyethanol, and methanol. The rheology of these soft materials can be tuned by altering the concentration of the polymer and/or crosslinker. Insights into the mechanisms leading to gelation were obtained from 1H NMR experiments, fluorescence measurements, and studies comparing properties of materials made from BDBA and phenylboronic acid, a molecule incapable of forming covalent crosslinks between the polymer chains. These organogels can be easily peeled off a surface, leaving no residue detectable by UV-vis spectroscopy. They are demonstrated to be effective at softening and removing deteriorated coatings from water-sensitive works of art and delicate surfaces. They have the needed characteristics to clean topographically complex surfaces: good contact with the surface, easy removal, and little to no residue after removal. A 2-ethoxyethanol organogel was used to remove oxidized varnish from a 16th century reliquary decorated with painted gold leaf, and an ethanol gel was used to remove solvent-resistant coatings from 16th and 18th century oil paintings.

6.
Chemphyschem ; 17(16): 2535-44, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27387383

ABSTRACT

We report the influence of adding five short-chain glycol ethers (SCGEs) on the structure, stability, and viscoelastic properties of aqueous dispersions of partially hydrolyzed poly(vinyl acetate) and borax. The properties of these gel-like materials have been investigated as a function of the structure of the added SCGE both below and above the critical aggregation (or micellar) concentrations using (11) B and (13) C NMR, rheology, and small-angle neutron scattering. The results indicate that the SCGE aggregation behavior is not affected by incorporation into the gel-like network. However, changes in the viscoelasticity and structural properties of the dispersions were detected that can be correlated to the nature of the solvent system. Also, the ability of these materials to clean an unvarnished acrylic paint surface coated with synthetic soil has been evaluated using colorimetery, and the surface of the dispersion after cleaning was visualized with scanning electron microscopy.

7.
ACS Omega ; 1(3): 344-350, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-31457132

ABSTRACT

To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm-1 for Pb(II) and ca. 1580 cm-1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

8.
Analyst ; 140(15): 5344-53, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26086455

ABSTRACT

Deep ultraviolet (DUV) photoluminescence (PL) microimaging is an emerging approach to characterise materials from historical artefacts (see M. Thoury, J.-P. Echard, M. Réfrégiers, B. H. Berrie, A. Nevin, F. Jamme and L. Bertrand, Anal. Chem., 2011, 83, 1737-1745). Here we further assess the potential of the method to access a deeper understanding of multi-layered varnishes coating wooden violins and lutes. Cross-section micro samples from important 16(th)- to 18(th)-century instruments were investigated using synchrotron PL microimaging and microspectroscopy. Excitation was performed in the DUV and the near ultraviolet (NUV) regions, and emission recorded from the DUV to the visible region, at a submicrometric spatial resolution. Intercomparison of microspectroscopy and microimaging was made possible by radiometrically correcting PL spectra both in excitation and emission. Based on an optimised selection of emission and excitation bands, the specific PL features of the organic binding materials allowed a vastly enhanced discrimination between collagen-based sizing layers and oil/resin-based layers compared to epiluminescence microscopy. PL therefore appears to be a very promising analytical tool to provide new insights into the diversity of surface coating techniques used by instrument-makers. More generally, our results demonstrate the potential of synchrotron PL for studying complex heterogeneous materials beyond the core application of the technique to life sciences.

9.
Article in English | MEDLINE | ID: mdl-22708904

ABSTRACT

Following a brief overview of the history of analysis of artists' pigments, I discuss the illustrative example of lead-tin yellow. Recent advances in our knowledge of artists' use of red lakes, glassy pigments, and metallic pigments in works of cultural heritage, particularly European paintings, as determined from chemical analyses are described.

10.
Acc Chem Res ; 43(6): 751-60, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20387877

ABSTRACT

The works of art and artifacts that constitute our cultural heritage are subject to deterioration, both from internal and from external factors. Surfaces that interact with the environment are the most prone to aging and decay; accordingly, soiling is a prime factor in the degradation of surfaces and the attendant disfigurement of a piece. Coatings that were originally intended to protect or contribute aesthetically to an artwork should be removed if they begin to have a destructive impact on its appearance or surface chemistry. Since the mid-19th century, organic solvents have been the method of choice for cleaning painted surfaces and removing degraded coatings. Care must be taken to choose a solvent mixture that minimizes swelling of or leaching from the original paint films, which would damage and compromise the physical integrity of all the layers of paint. The use of gels and poultices, first advocated in the 1980s, helps by localizing the solvent and, in some cases, by reducing solvent permeation into underlying paint layers. Unfortunately, it is not always easy to remove gels and their residues from a paint surface. In this Account, we address the removal problem by examining the properties of three classes of innovative gels for use on artwork--rheoreversible gels, magnetic gels, and "peelable" gels. Their rheological properties and efficacies for treating the surfaces of works have been studied, demonstrating uniquely useful characteristics in each class: (1) Rheoreversible gels become free-flowing on application of a chemical or thermal "switch". For art conservation, a chemical trigger is preferred. Stable gels formed by bubbling CO(2) through solutions of polyallylamine or polyethylenimines (thereby producing ammonium carbamates, which act as chain cross-links) can be prepared with a wide range of solvent mixtures. After solubilization of varnish and dirt, addition of a weak acid (mineral or organic) displaces the CO(2), and the resulting free-flowing liquid can be removed gently. (2) Incorporation of magnetic, coated-ferrite nanoparticles into polyacrylamide gels adds functionality to a versatile system comprising oil-in-water microemulsions, aqueous micellar solutions, or xerogels that act as sponges. The ferrite particles allow the use of magnets both to place the gels precisely on a surface and to lift them from it after cleaning. (3) Novel formulations of poly(vinyl alcohol)-borate gels, which accept a range of organic cosolvents, show promise for swelling and dissolving organic coatings. This family of gels can be quite stiff but can be spread. They are non-sticky and have sufficient strength to be removed by peeling or lifting them from a sensitive surface. These three classes of gels are potentially very important soft materials to augment and improve the range of options available for conserving cultural heritage, and their interesting chemical-physical properties open a rich area for future scientific investigation.

SELECTION OF CITATIONS
SEARCH DETAIL