Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Appl Microbiol Biotechnol ; 107(7-8): 2223-2233, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36843194

ABSTRACT

Culture medium heterogeneity is inherent in industrial bioreactors. The loss of mixing efficiency in a large-scale bioreactor yields to the formation of concentration gradients. Consequently, cells face oscillatory culture conditions that may deeply affect their metabolism. Herein, cell response to transient perturbations, namely high methanol concentration combined with hypoxia, has been investigated using a two stirred-tank reactor compartiments (STR-STR) scale-down system and a Pichia pastoris strain expressing the gene encoding enhanced green fluorescent protein (eGFP) under the control of the alcohol oxidase 1 (AOX1) promoter. Cell residence times under transient stressing conditions were calculated based on the typical hydraulic circulation times of bioreactors of tens and hundreds cubic metres. A significant increase in methanol and oxygen uptake rates was observed as the cell residence time was increased. Stressful culture conditions impaired biomass formation and triggered cell flocculation. More importantly, both expression levels of genes under the control of pAOX1 promoter and eGFP specific fluorescence were higher in those oscillatory culture conditions, suggesting that those a priori unfavourable culture conditions in fact benefit to recombinant protein productivity. Flocculent cells were also identified as the most productive as compared to ovoid cells. KEY POINTS: • Transient hypoxia and high methanol trigger high level of recombinant protein synthesis • In Pichia pastoris, pAOX1 induction is higher in flocculent cells • Medium heterogeneity leads to morphological diversification.


Subject(s)
Methanol , Pichia , Methanol/metabolism , Pichia/genetics , Pichia/metabolism , Bioreactors , Recombinant Proteins/metabolism , Hypoxia
2.
Sci Rep ; 13(1): 1482, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707606

ABSTRACT

Improving the cellular capacity of Chinese hamster ovary (CHO) cells to produce large amounts of therapeutic proteins remains a major challenge for the biopharmaceutical industry. In previous studies, we observed strong correlations between the performance of CHO cells and expression of two transcription factors (TFs), MYC and XBP1s. Here, we have evaluated the effective of overexpression of these two TFs on CHO cell productivity. To address this goal, we generated an EPO-producing cell line (CHOEPO) using a targeted integration approach, and subsequently engineered it to co-overexpress MYC and XBP1s (a cell line referred to as CHOCXEPO). Cells overexpressing MYC and XBP1s increased simultaneously viable cell densities and EPO production, leading to an enhanced overall performance in cultures. These improvements resulted from the individual effect of each TF in the cell behaviour (i.e., MYC-growth and XBP1s-productivity). An evaluation of the CHOCXEPO cells under different environmental conditions (temperature and media glucose concentration) indicated that CHOCXEPO cells increased cell productivity in high glucose concentration. This study showed the potential of combining TF-based cell engineering and process optimisation for increasing CHO cell productivity.


Subject(s)
Glucose , Animals , Cricetinae , Cell Proliferation , CHO Cells , Cricetulus , Recombinant Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , X-Box Binding Protein 1/metabolism
3.
PLoS One ; 17(11): e0277620, 2022.
Article in English | MEDLINE | ID: mdl-36374852

ABSTRACT

Low temperature and sodium butyrate (NaBu) are two of the most used productivity-enhancing strategies in CHO cell cultures during biopharmaceutical manufacturing. While these two approaches alter the balance in the reciprocal relationship between cell growth and productivity, we do not fully understand their mechanisms of action beyond a gross cell growth inhibition. Here, we used continuous culture to evaluate the differential effect of low temperature and NaBu supplementation on CHO cell performance and gene expression profile. We found that an increase in cell-productivity under growth-inhibiting conditions was associated with the arrest of cells in the G1/G0 phase. A transcriptome analysis revealed that the molecular mechanisms by which low temperature and NaBu arrested cell cycle in G1/G0 differed from each other through the deregulation of different cell cycle checkpoints and regulators. The individual transcriptome changes in pattern observed in response to low temperature and NaBu were retained when these two strategies were combined, leading to an additive effect in arresting the cell cycle in G1/G0 phase. The findings presented here offer novel molecular insights about the cell cycle regulation during the CHO cell bioprocessing and its implications for increased recombinant protein production. This data provides a background for engineering productivity-enhanced CHO cell lines for continuous manufacturing.


Subject(s)
Cell Culture Techniques , Cricetinae , Animals , CHO Cells , Resting Phase, Cell Cycle , Cricetulus , Recombinant Proteins/metabolism , Cell Cycle
4.
Microorganisms ; 10(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889185

ABSTRACT

Komagataella phaffii (aka Pichia pastoris) is a yeast able to grow in methanol as the sole carbon and energy source. This substrate is converted into formaldehyde, a toxic intermediary that can either be assimilated to biomass or dissimilated to CO2 through the enzymes formaldehyde dehydrogenase (FLD) and formate dehydrogenase, also producing energy in the form of NADH. The dissimilative pathway has been described as an energy producing and a detoxifying route, but conclusive evidence has not been provided for this. In order to elucidate this theory, we generated mutants lacking the FLD activity (Δfld1) and used flux analysis to evaluate the metabolic impact of this disrupted pathway. Unexpectedly, we found that the specific growth rate of the Δfld1 strain was only slightly lower (92%) than the control. In contrast, the sensitivity to formaldehyde pulses (up to 8mM) was significantly higher in the Δfld1 mutant strain and was associated with a higher maintenance energy. In addition, the intracellular flux estimation revealed a high metabolic flexibility of K. phaffii in response to the disrupted pathway. Our results suggest that the role of the dissimilative pathway is mainly to protect the cells from the harmful effect of formaldehyde, as they were able to compensate for the energy provided from this pathway when disrupted.

5.
Metabolites ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35448535

ABSTRACT

Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.

6.
Vaccines (Basel) ; 8(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963234

ABSTRACT

Vaccine-induced protection against pathogens, especially subunit-based vaccines, are related to antigen properties but mainly in their ability to stimulate the immune system by the use of an adjuvant. Modern vaccines are formulated with a high level of antigen purity, where an efficient adjuvant is necessary. In this context, the use of protein Toll-Like Receptor (TLR) agonists as vaccine adjuvants has been highlighted because of their optimal immunogenicity and minimal toxicity. The Surface Immunogenic Protein (SIP) from Group B Streptococcus (GBS) has gained importance as a new potential protein-based vaccine. Recently, we reported that recombinant SIP (rSIP) expressed by E. coli and purified by High Performance Liquid Chromatography (HPLC) alone induces a protective humoral immune response. In this study, we present the immunomodulatory properties of rSIP as a protein-based adjuvant, as an agonist of TLR. To this end, we showed that C57BL/6 bone marrow-derived dendritic cells pulsed by rSIP resulted in enhanced CD40, CD80, CD86, and Major Histocompatibility Complex (MHC) class II as well as increased secretion proinflammatory cytokines Interleukin (IL)-6, Interferon (IFN)-γ, Tumor Necrosis Factor (TNF)-α, and IL-10. Next, we investigated the in vivo effect of rSIP in the absence or presence of ovalbumin (OVA) on antigen-specific antibody secretion in C57BL/6 mice. Immunization with rSIP plus OVA showed that anti-OVA IgG2a and IgG1a increased significantly compared with OVA alone in C57BL/6 mice. Also, the immunization of rSIP plus OVA generates increased serum cytokines levels characterized by IL-12p70, IL-10, IL-4, and IFN-γ. Interestingly, we observed that rSIP stimulate Toll Like Receptor (TLR)2 and TLR4, individually expressed by Human embryonic kidney (HEK) 293-derived TLR reporter cells. These findings suggest that rSIP is a new potential protein TLR agonist adjuvant and may be employed in the development of new vaccines.

7.
Yeast ; 36(5): 297-304, 2019 05.
Article in English | MEDLINE | ID: mdl-30699241

ABSTRACT

Pichia pastoris is a well-established cell factory for recombinant protein synthesis. Various optimization strategies of processes based on AOX1 promoter have been investigated, including methanol co-feeding with glycerol or sorbitol during the induction stage. Compared with carbon sources, comparatively little research has been devoted to the effects of nitrogen sources. Several reports have described the benefits of adding casamino acids (CA) to the recombinant protein production medium, however, without considering its effects at the gene expression level. Using enhanced green fluorescent protein as a reporter protein, monitored using flow cytometry, CA was shown to downregulate AOX1 promoter induction. Despite higher growth rates, cultures containing CA exhibited slower transition to the induced state, whereas metabolite analysis revealed that methanol consumption was reduced in the presence of CA compared with its absence. The repressive effect of CA was further confirmed by analysing the synthesis of extracellular recombinant Candida antarctica lipase under control of the AOX1 promoter. These findings highlight nitrogen source selection as an important consideration for AOX1-based protein production.


Subject(s)
Down-Regulation , Nitrogen/metabolism , Pichia/genetics , Promoter Regions, Genetic , Recombinant Proteins/genetics , Amino Acids/metabolism , Fermentation , Gene Expression Regulation, Fungal , Green Fluorescent Proteins/genetics , Lipase/metabolism , Methanol/metabolism , Oxidoreductases , Pichia/drug effects
8.
Bioprocess Biosyst Eng ; 41(12): 1827-1838, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30196441

ABSTRACT

The methanol-glycerol co-feeding during the induction stage for heterologous protein production in Pichia pastoris has shown significant productive applications. Available model analysis applied to this dual-limited condition is scarce and normally does not consider the interaction effects between the substrates. In this work, a dual-limited growth model of P. pastoris considering an interactive kinetic effect was applied to an optimised fed-batch process production of heterologous Rhizopus oryzae lipase (ROL). In the proposed model, the growth kinetics on glycerol is fully expressed, whereas methanol kinetics is modulated by the co-metabolisation of glycerol, resulting in an enhancing effect of glycerol-specific growth rate. The modelling approach of fed-batch cultures also included the methanol volatilisation caused by the aeration that was found to be a not-negligible phenomenon. The model predicts the ability of P. pastoris to keep control of the methanol concentration in the broth during ROL-optimised production process in fed batch and fits satisfactorily the specific cell growth rate and ROL production. Implications of interaction effect are discussed applying the general procedure of modelling approach.


Subject(s)
Fungal Proteins/biosynthesis , Glycerol/pharmacology , Lipase/biosynthesis , Methanol/pharmacology , Models, Biological , Pichia/metabolism , Rhizopus/genetics , Fungal Proteins/genetics , Lipase/genetics , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Rhizopus/enzymology
9.
PLoS One ; 13(8): e0202098, 2018.
Article in English | MEDLINE | ID: mdl-30114204

ABSTRACT

In the biopharmaceutical sector, Chinese hamster ovary (CHO) cells have become the host of choice to produce recombinant proteins (r-proteins) due to their capacity for correct protein folding, assembly, and posttranslational modification. However, the production of therapeutic r-proteins in CHO cells is expensive and presents insufficient production yields for certain proteins. Effective culture strategies to increase productivity (qp) include a high glucose concentration in the medium and mild hypothermia (28-34 °C), but these changes lead to a reduced specific growth rate. To study the individual and combined impacts of glucose concentration, specific growth rate and mild hypothermia on culture performance and cell metabolism, we analyzed chemostat cultures of recombinant human tissue plasminogen activator (rh-tPA)-producing CHO cell lines fed with three glucose concentrations in feeding media (20, 30 and 40 mM), at two dilution rates (0.01 and 0.018 1/h) and two temperatures (33 and 37 °C). The results indicated significant changes in cell growth, cell cycle distribution, metabolism, and rh-tPA productivity in response to the varying environmental culture conditions. High glucose feed led to constrained cell growth, increased specific rh-tPA productivity and a higher number of cells in the G2/M phase. Low specific growth rate and temperature (33 °C) reduced glucose consumption and lactate production rates. Our findings indicated that a reduced specific growth rate coupled with high feed glucose significantly improves r-protein productivity in CHO cells. We also observed that low temperature significantly reduced qp, but not cell growth when dilution rate was manipulated, regardless of the glucose concentration or dilution rate. In contrast, we determined that feed glucose concentration and consumption rate were the dominant aspects of the growth and productivity in CHO cells by using multivariate analysis.


Subject(s)
Cell Proliferation/drug effects , Cold Temperature , Glucose/pharmacology , Recombinant Proteins/biosynthesis , Animals , CHO Cells , Cell Culture Techniques , Cell Cycle/drug effects , Cricetulus , Humans , Hypothermia , Principal Component Analysis , Recombinant Proteins/genetics , Tissue Plasminogen Activator/biosynthesis , Tissue Plasminogen Activator/genetics
10.
PLoS One ; 13(3): e0194510, 2018.
Article in English | MEDLINE | ID: mdl-29566086

ABSTRACT

Chinese hamster ovary (CHO) cells are the most frequently used host for commercial production of therapeutic proteins. However, their low protein productivity in culture is the main hurdle to overcome. Mild hypothermia has been established as an effective strategy to enhance protein specific productivity, although the causes of such improvement still remain unclear. The self-regulation of global transcriptional regulatory factors, such as Myc and XBP1s, seems to be involved in increased the recombinant protein production at low temperature. This study evaluated the impact of low temperature in CHO cell cultures on myc and xbp1s expression and their effects on culture performance and cell metabolism. Two anti-TNFα producing CHO cell lines were selected considering two distinct phenotypes: i.e. maximum cell growth, (CN1) and maximum specific anti-TNFα production (CN2), and cultured at 37, 33 and 31°C in a batch system. Low temperature led to an increase in the cell viability, the expression of the recombinant anti-TNFα and the production of anti-TNFα both in CN1 and CN2. The higher production of anti-TNFα in CN2 was mainly associated with the large expression of anti-TNFα. Under mild hypothermia myc and xbp1s expression levels were directly correlated to the maximal viable cell density and the specific anti-TNFα productivity, respectively. Moreover, cells showed a simultaneous metabolic shift from production to consumption of lactate and from consumption to production of glutamine, which were exacerbated by reducing culture temperature and coincided with the increased anti-TNFα production. Our current results provide new insights of the regulation of myc and xbp1s in CHO cells at low temperature, and suggest that the presence and magnitude of the metabolic shift might be a relevant metabolic marker of productive cell line.


Subject(s)
Antibodies, Monoclonal/metabolism , Biotechnology/methods , Cell Culture Techniques/methods , Cell Survival/physiology , Cold Temperature , Animals , CHO Cells , Cell Proliferation/physiology , Cricetinae , Cricetulus , Humans , Proto-Oncogene Proteins c-myc/metabolism , Recombinant Proteins/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/immunology , Up-Regulation , X-Box Binding Protein 1/metabolism
11.
Electron. j. biotechnol ; Electron. j. biotechnol;27: 55-62, May. 2017. tab, graf
Article in English | LILACS | ID: biblio-1010296

ABSTRACT

Background: To reduce costs associated with productivity of recombinant proteins in the biopharmaceutical industry, research has been focused on regulatory principals of growth and survival during the production phases of the cell culture. The main strategies involve the regulation of cell proliferation by the modulation of cell cycle control points (G1/S or G2/M) with mild hypothermia and the addition of sodium butyrate (NaBu). In this study, batch culture strategies were evaluated using CHO TF 70R cells producing the recombinant human tissue plasminogen activator (rh-tPA), to observe their individual and combined effect on the cellular physiological state and relevant kinetic parameters. Results: NaBu addition has a negative effect on the mitochondrial membrane potential (ΔΨm), the values of which are remarkably diminished in cultures exposed to this cytotoxic compound. This effect was not reflected in a loss of cell viability. NaBu and mild hypothermic conditions increased the doubling time in the cell cultures, suggesting that these strategies triggered a general slowing of each cell cycle phase in a different way. Finally, the individual and combined effect of NaBu and mild hypothermia produced an increase in the specific rh-tPA productivity in comparison to the control at 37°C without NaBu. Nevertheless, both strategies did not have a synergistic effect on the specific productivity. Conclusions: The combination of NaBu addition and mild hypothermic condition causes an impact on physiological and metabolic state of CHO TF 70R cells, decreasing cell growth rate and improving glucose consumption efficiency. These results therefore provide a promising strategy to increase specific productivity of rh-tPA.


Subject(s)
Recombinant Proteins/metabolism , CHO Cells/metabolism , Tissue Plasminogen Activator/metabolism , Butyric Acid/metabolism , Hypothermia , Cell Cycle , Cell Survival , CHO Cells/physiology , Tissue Plasminogen Activator/biosynthesis , Cell Proliferation , Membrane Potential, Mitochondrial
12.
J Ind Microbiol Biotechnol ; 44(3): 407-411, 2017 03.
Article in English | MEDLINE | ID: mdl-28035480

ABSTRACT

The production of recombinant proteins by Pichia pastoris under AOX1 promoter is usually performed using methanol together with either glycerol or sorbitol as co-substrate. Although both co-substrates have been widely used, comparative studies are scarce. In addition, these comparisons have been performed at different specific growth rate (µ) that it is well known that has an important effect on productivity. Thus, the effect of using these co-substrates on the production of Rhyzopus oryzae lipase (ROL) by P. pastoris was compared in continuous cultures growing at the same µ at either 22 or 30 °C. Results show that using glycerol as co-substrate led to higher volumetric productivities, and lower specific and volumetric methanol consumption rates. Scale-up simulation with 10-10,000 L bioreactor sizes indicated that glycerol produced the highest volumetric productivity of ROL with lower aeration requirements. Therefore, glycerol rises as a better option than sorbitol in ROL production.


Subject(s)
Culture Media/chemistry , Glycerol/chemistry , Methanol/chemistry , Pichia/enzymology , Sorbitol/chemistry , Bioreactors , Fungal Proteins/biosynthesis , Industrial Microbiology , Lipase/biosynthesis , Promoter Regions, Genetic , Recombinant Proteins/biosynthesis , Rhizopus/enzymology , Temperature
13.
PLoS One ; 10(12): e0144224, 2015.
Article in English | MEDLINE | ID: mdl-26659083

ABSTRACT

BACKGROUND: Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum. METHODS: In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD) processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA) were carried out at two temperatures (37°C and 33°C) and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system) or ERAD II (Autophagosoma/Lisosomal system) pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1) and low (0.012 h-1) dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA). RESULTS AND CONCLUSION: Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO cells is modulated predominantly by specific growth rate, indicating that the culture temperature has a lower weighted effect within the range of conditions evaluated in this work.


Subject(s)
Batch Cell Culture Techniques/methods , Endoplasmic Reticulum/metabolism , Hypothermia, Induced , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , Tissue Plasminogen Activator/metabolism , Animals , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Endoplasmic Reticulum-Associated Degradation , Glycosylation , Humans , Intracellular Space/metabolism , Principal Component Analysis , Temperature , Time Factors
14.
Biotechnol Prog ; 31(3): 707-14, 2015.
Article in English | MEDLINE | ID: mdl-25740724

ABSTRACT

The induction using substrate mixtures is an operational strategy for improving the productivity of heterologous protein production with Pichia pastoris. Glycerol as a cosubstrate allows for growth at a higher specific growth rate, but also has been reported to be repressor of the expression from the AOX1 promoter. Thus, further insights about the effects of glycerol are required for designing the induction stage with mixed substrates. The production of Rhizopus oryzae lipase (ROL) was used as a model system to investigate the application of methanol-glycerol feeding mixtures in fast metabolizing methanol phenotype. Cultures were performed in a simple chemostat system and the response surface methodology was used for the evaluation of both dilution rate and methanol-glycerol feeding composition as experimental factors. Our results indicate that productivity and yield of ROL are strongly affected by dilution rate, with no interaction effect between the involved factors. Productivity showed the highest value around 0.04-0.06 h(-1) , while ROL yield decreased along the whole dilution rate range evaluated (0.03-0.1 h(-1) ). Compared to production level achieved with methanol-only feeding, the highest specific productivity was similar in mixed feeding (0.9 UA g-biomass(-1) h(-1) ), but volumetric productivity was 70% higher. Kinetic analysis showed that these results are explained by the effects of dilution rate on specific methanol uptake rate, instead of a repressor effect caused by glycerol feeding. It is concluded that despite the effect of dilution rate on ROL yield, mixed feeding strategy is a proper process option to be applied to P. pastoris Mut(+) phenotype for heterologous protein production.


Subject(s)
Lipase/biosynthesis , Pichia/metabolism , Rhizopus/enzymology , Biomass , Culture Media/chemistry , Fermentation , Glycerol/chemistry , Methanol/chemistry , Phenotype
15.
PLoS One ; 9(4): e93865, 2014.
Article in English | MEDLINE | ID: mdl-24699760

ABSTRACT

Mild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific productivity of r-proteins. To separately analyze the effects of mild hypothermia and specific growth rate on CHO cell metabolism and recombinant human tissue plasminogen activator productivity as a model system, high dilution rate (0.017 h(-1)) and low dilution rate (0.012 h(-1)) at two cultivation temperatures (37 and 33 °C) were evaluated using chemostat culture. The results showed a positive effect on the specific productivity of r-protein with decreasing specific growth rate at 33 °C. Differential effect was achieved by mild hypothermia on the specific productivity of r-protein, contrary to the evidence reported in batch culture. Interestingly, reduction of metabolism could not be associated with a decrease in culture temperature, but rather with a decrease in specific growth rate.


Subject(s)
Cell Culture Techniques/methods , Cell Proliferation/physiology , Cell Survival/physiology , Cold Temperature , Animals , CHO Cells , Cricetulus
16.
Electron. j. biotechnol ; Electron. j. biotechnol;16(3): 10-10, May 2013. ilus, tab
Article in English | LILACS | ID: lil-684008

ABSTRACT

Background: The production of recombinant proteins for therapeutic use represents a great impact on the biotechnology industry. In this context, established mammalian cell lines, especially CHO cells, have become a standard system for the production of such proteins. Their ability to properly configure and excrete proteins in functional form is an enormous advantage which should be contrasted with their inherent technological limitations. These cell systems exhibit a metabolic behaviour associated with elevated cell proliferation which involves a high consumption of glucose and glutamine, resulting in the rapid depletion of these nutrients in the medium and the accumulation of ammonium and lactate. Both phenomena contribute to the limitation of cell growth, the triggering of apoptotic processes and the loss of quality of the recombinant protein. Results: In this review, the use of alternative substrates and genetic modifications (host cell engineering) are analyzed as tools to overcome those limitations. In general, the results obtained are promising. However, metabolic and physiological phenomena involved in CHO cells are still barely understood. Thus, most of publications are focused on specific modifications rather than giving a systemic perspective. Conclusions: A deeper insight in the integrated understanding of metabolism and cell mechanisms is required in order to define complementary strategies at these two levels, so providing effective means to control nutrients consumption, reduce by-products and increase process productivity.


Subject(s)
Recombinant Proteins/biosynthesis , Cells/metabolism , Mammals/metabolism , CHO Cells/metabolism , Energy Metabolism , Cell Engineering , Glutamine/metabolism , Glycolysis
17.
Electron. j. biotechnol ; Electron. j. biotechnol;15(6): 2-2, Nov. 2012. ilus, tab
Article in English | LILACS | ID: lil-662200

ABSTRACT

We evaluated the combined effect of decreasing the temperature to a mild hypothermia range (34 and 31ºC) and switching to a slowly metabolizable carbon source (glucose substituted by galactose) on the growth and production of a recombinant human tissue plasminogen activator (rh-tPA) by Chinese hamster ovary cells in batch and semi-perfusion cultures. In batch cultures using glucose as a carbon source, decreasing the temperature caused a reduction in cell growth and an increase in specific productivity of rh-tPA of 32 percent at 34ºC and 55 percent at 31ºC, compared to cultures at 37ºC. Similar behaviour was observed in cultures at 34ºC using galactose as a carbon source. Nonetheless, at 31ºC, the specific productivity of rh-tPA strongly decreased (about 58 percent) compared to the culture at 37ºC. In semi-perfusion culture, the highest rh-tPA specific productivity was obtained at 34ºC. Similarly, whether a decrease in the temperature is accompanied of the replacement of glucose by galactose, the rh-tPA specific productivity improved about 112 percent over that obtained in semi-perfusion culture carried out at 37ºC with glucose as the carbon source. A semi-perfusion culture strategy was implemented based on the combined effect of the chosen carbon source and low temperatures, which was a useful approach for enhance the specific productivity of the recombinant protein.


Subject(s)
CHO Cells , Cold Temperature , Galactose , Glutamic Acid , Tissue Plasminogen Activator , Cell Culture Techniques , Temperature
18.
Bioresour Technol ; 101(23): 9405-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20675122

ABSTRACT

Alginate production by Azotobacter vinelandii in chemostat cultures was evaluated at different dilution rates (D) and inlet sucrose concentrations of 5 and 20 g l(-1). At the low inlet sucrose concentration, the molecular weight of alginate increased from 800 to 1800 kDa when D increased from 0.05 to 0.10 h(-1), whereas the opposite trend was observed with the high inlet sucrose concentration. This behaviour can be explained by changes in specific sucrose uptake rate. Thus, a decrease in alginate molecular weight was dependent on the specific sucrose uptake rate when this rate was higher than 0.42 g g(-1) h(-1). The manipulation of the D can be used to select the molecular weight of alginate in continuous culture.


Subject(s)
Alginates/chemistry , Azotobacter vinelandii/cytology , Azotobacter vinelandii/metabolism , Cell Culture Techniques/methods , Biomass , Glucuronic Acid/biosynthesis , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Molecular Weight , Sucrose/metabolism
19.
Biotechnol Lett ; 31(10): 1493-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19547928

ABSTRACT

Chinese hamster ovary (CHO) cells, producing human recombinant tissue plasminogen activator (tPA), were grown with mannose (5, 20 and 40 mM) instead of glucose at 31, 33 and 37 degrees C. The highest tPA concentration (1.5 mg l(-1) at 144 h of cultivation) and tPA specific production rate (47 ng 10(-6) cell h(-1)) were obtained at 31 degrees C and 40 mM mannose. Regardless of the temperature or mannose concentration used, an inverse relationship between the specific growth rate and tPA specific production rate was observed, suggesting that tPA production rate would be directly controlled by the growth rate.


Subject(s)
Cell Proliferation , Mannose/metabolism , Temperature , Tissue Plasminogen Activator/biosynthesis , Animals , CHO Cells , Cricetinae , Cricetulus , Culture Media/chemistry , Female , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Statistics as Topic , Tissue Plasminogen Activator/genetics
20.
Biotechnol Lett ; 26(1): 67-70, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15005155

ABSTRACT

A novel method for the quantitative determination of gibberellic acid in fermentation broths has been developed. It is based on the kinetic of the reaction of conversion of gibberellic acid to gibberellenic acid. The method is simple, reliable, faster than most of methods known, and free of the interferences which commonly affect spectrophotometric methods currently in use. Its threshold sensitivity is 0.1 g and its accuracy is greater than 97% for concentrations of gibberellic acid ranging from 0.1 to 1 g l(-1).


Subject(s)
Culture Media/analysis , Culture Media/metabolism , Gibberella/growth & development , Gibberella/metabolism , Gibberellins/analysis , Gibberellins/biosynthesis , Spectrophotometry/methods , Fermentation/physiology , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL