Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(9): 3879-3885, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38380610

ABSTRACT

Intense solvent signals in 1H solution-state NMR experiments typically cause severe distortion of spectra and mask nearby solute signals. It is often infeasible or undesirable to replace a solvent with its perdeuterated form, for example, when analyzing formulations in situ, when exchangeable protons are present, or for practical reasons. Solvent signal suppression techniques are therefore required. WATERGATE methods are well-known to provide good solvent suppression while enabling retention of signals undergoing chemical exchange with the solvent signal. Spectra of mixtures, such as pharmaceutical formulations, are often complicated by signal overlap, high dynamic range, the narrow spectral width of 1H NMR, and signal multiplicity. Here, we show that by combining WATERGATE solvent suppression with pure shift NMR, ultrahigh-resolution 1H NMR spectra can be acquired while suppressing intense solvent signals and retaining exchangeable 1H signals. The new method is demonstrated in the analysis of cyanocobalamin, a vitamin B12 supplement, and of an eye-drop formulation of atropine.

2.
ACS Catal ; 11(21): 13649-13659, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34777911

ABSTRACT

Noyori-Ikariya type [(arene)RuCl(TsDPEN)] (TsDPEN, sulfonated diphenyl ethylenediamine) complexes are widely used C=O and C=N reduction catalysts that produce chiral alcohols and amines via a key ruthenium-hydride intermediate that determines the stereochemistry of the product. Whereas many details about the interactions of the pro-chiral substrate with the hydride complex and the nature of the hydrogen transfer from the latter to the former have been investigated over the past 25 years, the role of the stereochemical configuration at the stereogenic ruthenium center in the catalysis has not been elucidated so far. Using operando FlowNMR spectroscopy and nuclear Overhauser effect spectroscopy, we show the existence of two diastereomeric hydride complexes under reaction conditions, assign their absolute configurations in solution, and monitor their interconversion during transfer hydrogenation catalysis. Configurational analysis and multifunctional density functional theory (DFT) calculations show the λ-(R,R)S Ru configured [(mesitylene)RuH(TsDPEN)] complex to be both thermodynamically and kinetically favored over its λ-(R,R)R Ru isomer with the opposite configuration at the metal. Computational analysis of both diastereomeric catalytic manifolds show the major λ-(R,R)S Ru configured [(mesitylene)RuH(TsDPEN)] complex to dominate asymmetric ketone reduction catalysis with the minor λ-(R,R)R Ru [(mesitylene)RuH(TsDPEN)] stereoisomer being both less active and less enantioselective. These findings also hold true for a tethered catalyst derivative with a propyl linker between the arene and TsDPEN ligands and thus show enantioselective transfer hydrogenation catalysis with Noyori-Ikariya complexes to proceed via a lock-and-key mechanism.

3.
Faraday Discuss ; 220(0): 45-57, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31524899

ABSTRACT

Transfer hydrogenation of acetophenone from formic acid/triethylamine mixtures catalysed by the Ikariya-Noyori complex [(mesitylene)RuCl(R,R)-(TsDPEN)] has been investigated using simultaneous high-resolution FlowNMR and FlowUV-Vis spectroscopies coupled with on-line sampling head-space mass spectrometry and chiral high-performance liquid chromatography using an integrated, fully automated recirculating flow setup. In line with previous observations, the combined results show a gradual switch from formic acid dehydrogenation to hydrogen transfer mediated by the same Ru-hydride complex, and point to a Ru-formate species as the major catalyst intermediate. Hydrogen bonding in the formic acid/triethylamine mixture emerges as a sensitive 1H NMR probe for the transfer hydrogenation activity of the system and can be used to locate optimum reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...