Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(3): e2216237120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626560

ABSTRACT

Type 4 filaments (T4F)-of which type 4 pili (T4P) are the archetype-are a superfamily of nanomachines nearly ubiquitous in prokaryotes. T4F are polymers of one major pilin, which also contain minor pilins whose roles are often poorly understood. Here, we complete the structure/function analysis of the full set of T4P pilins in the opportunistic bacterial pathogen Streptococcus sanguinis. We determined the structure of the minor pilin PilA, which is unexpectedly similar to one of the subunits of a tip-located complex of four minor pilins, widely conserved in T4F. We found that PilA interacts and dramatically stabilizes the minor pilin PilC. We determined the structure of PilC, showing that it is a modular pilin with a lectin module binding a subset of glycans prevalent in the human glycome, the host of S. sanguinis. Altogether, our findings support a model whereby the minor pilins in S. sanguinis T4P form a tip-located complex promoting adhesion to various host receptors. This has general implications for T4F.


Subject(s)
Fimbriae Proteins , Streptococcus sanguis , Humans , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/metabolism
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34031252

ABSTRACT

Type IV pili (T4P) are functionally versatile filamentous nanomachines, nearly ubiquitous in prokaryotes. They are predominantly polymers of one major pilin but also contain minor pilins whose functions are often poorly defined and likely to be diverse. Here, we show that the minor pilin PilB from the T4P of Streptococcus sanguinis displays an unusual bimodular three-dimensional structure with a bulky von Willebrand factor A-like (vWA) module "grafted" onto a small pilin module via a short loop. Structural modeling suggests that PilB is only compatible with a localization at the tip of T4P. By performing a detailed functional analysis, we found that 1) the vWA module contains a canonical metal ion-dependent adhesion site, preferentially binding Mg2+ and Mn2+, 2) abolishing metal binding has no impact on the structure of PilB or piliation, 3) metal binding is important for S. sanguinis T4P-mediated twitching motility and adhesion to eukaryotic cells, and 4) the vWA module shows an intrinsic binding ability to several host proteins. These findings reveal an elegant yet simple evolutionary tinkering strategy to increase T4P functional versatility by grafting a functional module onto a pilin for presentation by the filaments. This strategy appears to have been extensively used by bacteria, in which modular pilins are widespread and exhibit an astonishing variety of architectures.


Subject(s)
Bacterial Proteins/physiology , Cell Adhesion , Fimbriae Proteins/physiology , Oxidoreductases/physiology , Streptococcus sanguis/physiology , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , CHO Cells , Cricetulus , Escherichia coli , Fimbriae Proteins/chemistry , Humans , Oxidoreductases/chemistry , Protein Conformation , Streptococcus sanguis/chemistry
3.
J Biol Chem ; 295(19): 6594-6604, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32273343

ABSTRACT

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.


Subject(s)
Fimbriae Proteins/chemistry , Fimbriae, Bacterial/chemistry , Protein Folding , Streptococcus pneumoniae/chemistry , Streptococcus sanguis/chemistry , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Streptococcus pneumoniae/genetics , Streptococcus sanguis/genetics
4.
J Biol Chem ; 294(17): 6796-6808, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30837269

ABSTRACT

Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.


Subject(s)
Fimbriae, Bacterial/metabolism , Streptococcus/metabolism , Biopolymers/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Methylation , Protein Conformation
5.
Nat Commun ; 10(1): 1130, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850607

ABSTRACT

Conserved lipid transfer proteins of the Ups/PRELI family regulate lipid accumulation in mitochondria by shuttling phospholipids in a lipid-specific manner across the intermembrane space. Here, we combine structural analysis, unbiased genetic approaches in yeast and molecular dynamics simulations to unravel determinants of lipid specificity within the conserved Ups/PRELI family. We present structures of human PRELID1-TRIAP1 and PRELID3b-TRIAP1 complexes, which exert lipid transfer activity for phosphatidic acid and phosphatidylserine, respectively. Reverse yeast genetic screens identify critical amino acid exchanges that broaden and swap their lipid specificities. We find that amino acids involved in head group recognition and the hydrophobicity of flexible loops regulate lipid entry into the binding cavity. Molecular dynamics simulations reveal different membrane orientations of PRELID1 and PRELID3b during the stepwise release of lipids. Our experiments thus define the structural determinants of lipid specificity and the dynamics of lipid interactions by Ups/PRELI proteins.


Subject(s)
Carrier Proteins/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Mitochondrial Proteins/chemistry , Phosphatidic Acids/chemistry , Phosphatidylserines/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Binding Sites , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Phosphatidic Acids/metabolism , Phosphatidylserines/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
6.
J Mol Biol ; 430(20): 3863-3871, 2018 10 12.
Article in English | MEDLINE | ID: mdl-29886016

ABSTRACT

Gram-negative bacteria possess specialized biogenesis machineries that facilitate the export of amyloid subunits, the fibers of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialized outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8-Å resolution. This domain forms a novel asymmetric trimeric coiled coil that possesses a single buried tyrosine residue as well as an extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Bacterial Proteins/chemistry , Models, Molecular , Protein Conformation , Amino Acid Sequence , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Bacterial Proteins/metabolism , Position-Specific Scoring Matrices , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship
7.
Nat Commun ; 8(1): 263, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811582

ABSTRACT

Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated ß-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences.Gram-negative bacteria assemble biofilms from amyloid fibres, which translocate across the outer membrane as unfolded amyloid precursors through a secretion system. Here, the authors characterise the structural details of the amyloid transporter FapF in Pseudomonas.


Subject(s)
Amyloid/metabolism , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Pseudomonas/metabolism , Amyloid/chemistry , Amyloid/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/chemistry , Bacterial Secretion Systems/genetics , Biofilms , Crystallography, X-Ray , Protein Conformation , Protein Transport , Pseudomonas/chemistry , Pseudomonas/genetics
8.
Nucleic Acids Res ; 45(6): e40, 2017 04 07.
Article in English | MEDLINE | ID: mdl-27903891

ABSTRACT

Streptococcus sanguinis, a naturally competent opportunistic human pathogen, is a Gram-positive workhorse for genomics. It has recently emerged as a model for the study of type IV pili (Tfp)-exceptionally widespread and important prokaryotic filaments. To enhance genetic manipulation of Streptococcus sanguinis, we have developed a cloning-independent methodology, which uses a counterselectable marker and allows sophisticated markerless gene editing in situ. We illustrate the utility of this methodology by answering several questions regarding Tfp biology by (i) deleting single or mutiple genes, (ii) altering specific bases in genes of interest, and (iii) engineering genes to encode proteins with appended affinity tags. We show that (i) the last six genes in the pil locus harbouring all the genes dedicated to Tfp biology play no role in piliation or Tfp-mediated motility, (ii) two highly conserved Asp residues are crucial for enzymatic activity of the prepilin peptidase PilD and (iii) that pilin subunits with a C-terminally appended hexa-histidine (6His) tag are still assembled into functional Tfp. The methodology for genetic manipulation we describe here should be broadly applicable.


Subject(s)
Fimbriae Proteins/genetics , Gene Editing/methods , Streptococcus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Engineering , Endopeptidases/genetics , Endopeptidases/metabolism , Fimbriae Proteins/physiology , Gene Deletion , Genetic Markers , Histidine , Mutation, Missense , Oligopeptides , Protein Engineering , Streptococcus/physiology
9.
Structure ; 24(6): 926-34, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27161979

ABSTRACT

DNA transformation is a widespread process allowing bacteria to capture free DNA by using filamentous nano-machines composed of type IV pilins. These proteins can act as DNA receptors as demonstrated by the finding that Neisseria meningitidis ComP minor pilin has intrinsic DNA-binding ability. ComP binds DNA better when it contains the DNA-uptake sequence (DUS) motif abundant in this species genome, playing a role in its trademark ability to selectively take up its own DNA. Here, we report high-resolution structures for meningococcal ComP and Neisseria subflava ComPsub, which recognize different DUS motifs. We show that they are structurally identical type IV pilins that pack readily into filament models and display a unique DD region delimited by two disulfide bonds. Functional analysis of ComPsub defines a new mode of DNA binding involving the DD region, adapted for exported DNA receptors.


Subject(s)
DNA, Bacterial/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Neisseria/metabolism , Amino Acid Motifs , Binding Sites , Crystallography, X-Ray , Fimbriae, Bacterial/metabolism , Models, Molecular , Neisseria/chemistry , Protein Binding , Protein Conformation , Protein Folding
10.
FEMS Microbiol Rev ; 39(1): 134-54, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25793961

ABSTRACT

Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Fimbriae Proteins/metabolism , Archaea/classification , Bacteria/classification , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/metabolism , Protein Folding , Protein Structure, Tertiary
11.
PLoS Genet ; 9(12): e1004014, 2013.
Article in English | MEDLINE | ID: mdl-24385921

ABSTRACT

Natural transformation is the widespread biological process by which "competent" bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or "transformed". To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence) watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.


Subject(s)
Base Sequence/genetics , DNA-Binding Proteins/genetics , Gene Transfer, Horizontal/genetics , Neisseria meningitidis/genetics , Transformation, Bacterial/genetics , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Humans , Neisseria meningitidis/growth & development
12.
PLoS Pathog ; 8(9): e1002923, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028322

ABSTRACT

Type IV pili are polymeric fibers which protrude from the cell surface and play a critical role in adhesion and invasion by pathogenic bacteria. The secretion of pili across the periplasm and outer membrane is mediated by a specialized secretin protein, PilQ, but the way in which this large channel is formed is unknown. Using NMR, we derived the structures of the periplasmic domains from N. meningitidis PilQ: the N-terminus is shown to consist of two ß-domains, which are unique to the type IV pilus-dependent secretins. The structure of the second ß-domain revealed an eight-stranded ß-sandwich structure which is a novel variant of the HSP20-like fold. The central part of PilQ consists of two α/ß fold domains: the structure of the first of these is similar to domains from other secretins, but with an additional α-helix which links it to the second α/ß domain. We also determined the structure of the entire PilQ dodecamer by cryoelectron microscopy: it forms a cage-like structure, enclosing a cavity which is approximately 55 Å in internal diameter at its largest extent. Specific regions were identified in the density map which corresponded to the individual PilQ domains: this allowed us to dock them into the cryoelectron microscopy density map, and hence reconstruct the entire PilQ assembly which spans the periplasm. We also show that the C-terminal domain from the lipoprotein PilP, which is essential for pilus assembly, binds specifically to the first α/ß domain in PilQ and use NMR chemical shift mapping to generate a model for the PilP:PilQ complex. We conclude that passage of the pilus fiber requires disassembly of both the membrane-spanning and the ß-domain regions in PilQ, and that PilP plays an important role in stabilising the PilQ assembly during secretion, through its anchorage in the inner membrane.


Subject(s)
Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Neisseria meningitidis/metabolism , Neisseria meningitidis/ultrastructure , Bacterial Adhesion , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/ultrastructure , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Periplasm/metabolism , Protein Binding , Protein Folding , Protein Structure, Tertiary
13.
Trends Microbiol ; 19(1): 40-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21130656

ABSTRACT

Gram-negative bacteria need to maintain the integrity of their outer membrane while also regulating the secretion of toxins and other macromolecules. A variety of dedicated outer membrane proteins (OMPs) facilitate this process. Recent structural work has shown that some of these proteins adopt classical ß-barrel transmembrane structures and rely on structural changes within the barrel lumen to allow passage of substrate proteins. Other secretion systems have OMP components which use transmembrane α-helices and appear to function in a different way. Here we review a selection of recent structural studies which have major ramifications for our understanding of the passage of macromolecules across the outer membrane.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Gram-Negative Bacteria/metabolism , Biological Transport, Active , Gram-Negative Bacteria/cytology , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...