Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 175: 108524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688126

ABSTRACT

BACKGROUND AND OBJECTIVES: The paper introduces a tool called Automatic Scaling Tool (AST) designed for improving and expediting musculoskeletal (MSK) simulations based on generic models in OpenSim. Scaling is a crucial initial step in MSK analyses, involving the correction of virtual marker locations on a model to align with actual experimental markers. METHODS: The AST automates this process by iteratively adjusting virtual markers using scaling and inverse kinematics on a static trial. It evaluates the root mean square error (RMSE) and maximum marker error, implementing corrective actions until achieving the desired accuracy level. The tool determines whether to scale a segment with a marker-based or constant scaling factor based on checks on RMSE and segment scaling factors. RESULTS: Testing on three generic MSK models demonstrated that the AST significantly outperformed manual scaling by an expert operator. The RMSE for static trials was one order of magnitude lower, and for gait tasks, it was five times lower (8.5 ± 0.76 mm vs. 44.5 ± 7.5 mm). The AST consistently achieved the desired level of accuracy in less than 100 iterations, providing reliable scaled MSK models within a relatively brief timeframe, ranging from minutes to hours depending on model complexity. CONCLUSIONS: The paper concludes that AST can greatly benefit the biomechanical community by quickly and accurately scaling generic models, a critical first step in MSK analyses. Further validation through additional experimental datasets and generic models is proposed for future tests.


Subject(s)
Models, Biological , Humans , Software , Biomechanical Phenomena/physiology , Computer Simulation , Gait/physiology
2.
J Appl Biomech ; 39(5): 294-303, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37586711

ABSTRACT

This review paper provides an overview of the approaches to model neuromuscular control, focusing on methods to identify nonoptimal control strategies typical of populations with neuromuscular disorders or children. Where possible, the authors tightened the description of the methods to the mechanisms behind the underlying biomechanical and physiological rationale. They start by describing the first and most simplified approach, the reductionist approach, which splits the role of the nervous and musculoskeletal systems. Static optimization and dynamic optimization methods and electromyography-based approaches are summarized to highlight their limitations and understand (the need for) their developments over time. Then, the authors look at the more recent stochastic approach, introduced to explore the space of plausible neural solutions, thus implementing the uncontrolled manifold theory, according to which the central nervous system only controls specific motions and tasks to limit energy consumption while allowing for some degree of adaptability to perturbations. Finally, they explore the literature covering the explicit modeling of the coupling between the nervous system (acting as controller) and the musculoskeletal system (the actuator), which may be employed to overcome the split characterizing the reductionist approach.

SELECTION OF CITATIONS
SEARCH DETAIL