Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(22): 35003-35021, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34808946

ABSTRACT

We have developed and demonstrated an image super-resolution method-XR-UNLOC: X-Ray UNsupervised particle LOCalization-for hard x-rays measured with fast-frame-rate detectors that is an adaptation of the principle of photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), which enabled biological fluorescence imaging at sub-optical-wavelength scales. We demonstrate the approach on experimental coherent Bragg diffraction data measured with 52 keV x-rays from a nanocrystalline sample. From this sample, we resolve the fine fringe detail of a high-energy x-ray Bragg coherent diffraction pattern to an upsampling factor of 16 of the native pixel pitch of 30 µm of a charge-integrating fastCCD detector. This was accomplished by analysis of individual photon locations in a series of "nearly-dark" instances of the diffraction pattern that each contain only a handful of photons. Central to our approach was the adaptation of the UNLOC photon fitting routine for PALM/STORM to the hard x-ray regime to handle much smaller point spread functions, which required a different statistical test for photon detection and for sub-pixel localization. A comparison to a photon-localization strategy used in the x-ray community ("droplet analysis") showed that XR-UNLOC provides significant improvement in super-resolution. We also developed a metric by which to estimate the limit of reliable upsampling with XR-UNLOC under a given set of experimental conditions in terms of the signal-to-noise ratio of a photon detection event and the size of the point spread function for guiding future x-ray experiments in many disciplines where detector pixelation limits must be overcome.

2.
Methods Cell Biol ; 139: 1-22, 2017.
Article in English | MEDLINE | ID: mdl-28215331

ABSTRACT

Due to the intrinsic molecular Brownian agitation within plasma membrane and the vast diversity of membrane components, it is expected that the plasma membrane organization is highly heterogeneous with the formation of local complex multicomponent assemblies of lipids and proteins on different time scales. Still, deciphering this lateral organization on living cells and on the appropriate length and temporal scales has been challenging but is crucial to advance our knowledge on the biological function of the plasma membrane. Among the methodological developments based on biophotonics, the spot variation FCS (svFCS), a fluorescent correlation spectroscopy (FCS)-based method, has allowed the significant progress in the characterization of cell membrane lateral organization at the suboptical level, including to providing compelling evidence for the in vivo existence of lipid-dependent nanodomains. The aim of this chapter is to serve as a guide for setting and applying the svFCS methodology to study the plasma membrane of both adherent and nonadherent cell types.


Subject(s)
Cell Membrane/chemistry , Membrane Lipids/chemistry , Membrane Microdomains/chemistry , Spectrometry, Fluorescence/methods , Cell Membrane/ultrastructure , Diffusion , Membrane Microdomains/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL