Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119610, 2024 02.
Article in English | MEDLINE | ID: mdl-37913845

ABSTRACT

BACKGROUND: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and ß CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS: Co-transfection with αCaMKII-pcDNA3/ßCaMKII-pcDNA3 increased α and ßCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-ßCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/ß CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION: Enhanced capacity for α/ß CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Rats , Mice , Animals , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium Signaling , Muscle Contraction
2.
Proc Natl Acad Sci U S A ; 120(45): e2305959120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903280

ABSTRACT

TRAAK channels are mechano-gated two-pore-domain K+ channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.e., selective to K+ ions, of 56 pS unitary conductance in the presence of 5 mM external K+, activated by membrane stretch, heat, arachidonic acid, and internal alkaline pH, are present in enzymatically isolated fast skeletal muscle fibers from adult zebrafish. The kcnk4b transcript encoding for TRAAK channels was cloned and found, concomitantly with activity of mechano-gated K+ channels, to be absent in zebrafish fast skeletal muscles at the larval stage but arising around 1 mo of age. The transfer of the kcnk4b gene in HEK cells and in the adult mouse muscle, that do not express functional TRAAK channels, led to expression and activity of mechano-gated K+ channels displaying properties comparable to native zebrafish TRAAK channels. In whole-cell voltage-clamp and current-clamp conditions, membrane stretch and heat led to activation of macroscopic K+ currents and to acceleration of the repolarization phase of action potentials respectively, suggesting that heat production and membrane deformation associated with skeletal muscle activity can control muscle excitability through TRAAK channel activation. TRAAK channels may represent a teleost-specific evolutionary product contributing to improve swimming performance for escaping predators and capturing prey at a critical stage of development.


Subject(s)
Hot Temperature , Zebrafish , Animals , Mice , Chlorocebus aethiops , Zebrafish/genetics , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal , COS Cells
3.
J Gen Physiol ; 155(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36820799

ABSTRACT

Tight control of skeletal muscle contractile activation is secured by the excitation-contraction (EC) coupling protein complex, a molecular machinery allowing the plasma membrane voltage to control the activity of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. This machinery has been shown to be intimately linked to the plasma membrane protein pannexin-1 (Panx1). We investigated whether the prescription drug probenecid, a widely used Panx1 blocker, affects Ca2+ signaling, EC coupling, and muscle force. The effect of probenecid was tested on membrane current, resting Ca2+, and SR Ca2+ release in isolated mouse muscle fibers, using a combination of whole-cell voltage-clamp and Ca2+ imaging, and on electrically triggered contraction of isolated muscles. Probenecid (1 mM) induces SR Ca2+ leak at rest and reduces peak voltage-activated SR Ca2+ release and contractile force by 40%. Carbenoxolone, another Panx1 blocker, also reduces Ca2+ release, but neither a Panx1 channel inhibitory peptide nor a purinergic antagonist affected Ca2+ release, suggesting that probenecid and carbenoxolone do not act through inhibition of Panx1-mediated ATP release and consequently altered purinergic signaling. Probenecid may act by altering Panx1 interaction with the EC coupling machinery, yet the implication of another molecular target cannot be excluded. Since probenecid has been used both in the clinic and as a masking agent for doping in sports, these results should encourage evaluation of possible effects on muscle function in treated individuals. In addition, they also raise the question of whether probenecid-induced altered Ca2+ homeostasis may be shared by other tissues.


Subject(s)
Calcium , Probenecid , Mice , Animals , Probenecid/metabolism , Probenecid/pharmacology , Calcium/metabolism , Carbenoxolone/metabolism , Carbenoxolone/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle Contraction , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Nerve Tissue Proteins/metabolism , Connexins/metabolism
4.
J Gen Physiol ; 154(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35767225

ABSTRACT

The zebrafish has emerged as a very relevant animal model for probing the pathophysiology of human skeletal muscle disorders. This vertebrate animal model displays a startle response characterized by high-frequency swimming activity powered by contraction of fast skeletal muscle fibers excited at extremely high frequencies, critical for escaping predators and capturing prey. Such intense muscle performance requires extremely fast properties of the contractile machinery but also of excitation-contraction coupling, the process by which an action potential spreading along the sarcolemma induces a change in configuration of the dihydropyridine receptors, resulting in intramembrane charge movements, which in turn triggers the release of Ca2+ from the sarcoplasmic reticulum. However, thus far, the fastest Ca2+ transients evoked by vertebrate muscle fibers has been described in muscles used to produce sounds, such as those in the toadfish swim bladder, but not in muscles used for locomotion. By performing intracellular Ca2+ measurements under voltage control in isolated fast skeletal muscle fibers from adult zebrafish and mouse, we demonstrate that fish fast muscle fibers display superfast kinetics of action potentials, intramembrane charge movements, and action potential-evoked Ca2+ transient, allowing fusion and fused sustained Ca2+ transients at frequencies of excitation much higher than in mouse fast skeletal muscle fibers and comparable to those recorded in muscles producing sounds. The present study is the first demonstration of superfast kinetics of excitation-contraction coupling in skeletal muscle allowing superfast locomotor behaviors in a vertebrate.


Subject(s)
Calcium , Zebrafish , Animals , Mice , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Sarcoplasmic Reticulum
5.
J Gen Physiol ; 153(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33538764

ABSTRACT

In intact muscle fibers, functional properties of ryanodine receptor (RYR)-mediated sarcoplasmic reticulum (SR) Ca2+ release triggered by activation of the voltage sensor CaV1.1 have so far essentially been addressed with diffusible Ca2+-sensitive dyes. Here, we used a domain (T306) of the protein triadin to target the Ca2+-sensitive probe GCaMP6f to the junctional SR membrane, in the immediate vicinity of RYR channels, within the triad region. Fluorescence of untargeted GCaMP6f was distributed throughout the muscle fibers and experienced large Ca2+-dependent changes, with obvious kinetic delays, upon application of voltage-clamp depolarizing pulses. Conversely, T306-GCaMP6f localized to the triad and generated Ca2+-dependent fluorescence transients of lower amplitude and faster kinetics for low and intermediate levels of Ca2+ release than those of untargeted GCaMP6f. By contrast, model simulation of the spatial gradients of Ca2+ following Ca2+ release predicted limited kinetic differences under the assumptions that the two probes were present at the same concentration and suffered from identical kinetic limitations. At the spatial level, T306-GCaMP6f transients within distinct regions of a same fiber yielded a uniform time course, even at low levels of Ca2+ release activation. Similar observations were made using GCaMP6f fused to the γ1 auxiliary subunit of CaV1.1. Despite the probe's limitations, our results point out the remarkable synchronicity of voltage-dependent Ca2+ release activation and termination among individual triads and highlight the potential of the approach to visualize activation or closure of single groups of RYR channels. We anticipate targeting of improved Ca2+ sensors to the triad will provide illuminating insights into physiological normal RYR function and its dysfunction under stress or pathological conditions.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Calcium/metabolism , Calcium Signaling , Coloring Agents/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
6.
Diabetologia ; 63(11): 2471-2481, 2020 11.
Article in English | MEDLINE | ID: mdl-32840676

ABSTRACT

AIMS/HYPOTHESIS: Disrupted intracellular Ca2+ handling is known to play a role in diabetic cardiomyopathy but it has also been postulated to contribute to obesity- and type 2 diabetes-associated skeletal muscle dysfunction. Still, there is so far very limited functional insight into whether, and if so to what extent, muscular Ca2+ homeostasis is affected in this situation, so as to potentially determine or contribute to muscle weakness. In differentiated muscle, force production is under the control of the excitation-contraction coupling process: upon plasma membrane electrical activity, the CaV1.1 voltage sensor/Ca2+ channel in the plasma membrane triggers opening of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. Opening of the ryanodine receptor triggers the rise in cytosolic Ca2+, which activates contraction while Ca2+ uptake by the SR ATPase Ca2+-pump promotes relaxation. These are the core mechanisms underlying the tight control of muscle force by neuronal electrical activity. This study aimed at characterising their inherent physiological function in a diet-induced mouse model of obesity and type 2 diabetes. METHODS: Intact muscle fibres were isolated from mice fed either with a standard chow diet or with a high-fat, high-sucrose diet generating obesity, insulin resistance and glucose intolerance. Properties of muscle fibres were investigated with a combination of whole-cell voltage-clamp electrophysiology and confocal fluorescence imaging. The integrity and density of the plasma membrane network (transverse tubules) that carries the membrane excitation throughout the muscle fibres was assessed with the dye Di-8-ANEPPS. CaV1.1 Ca2+ channel activity was studied by measuring the changes in current across the plasma membrane elicited by voltage-clamp depolarising pulses of increasing amplitude. SR Ca2+ release through ryanodine receptors was simultaneously detected with the Ca2+-sensitive dye Rhod-2 in the cytosol. CaV1.1 voltage-sensing activity was separately characterised from the properties of intra-plasma-membrane charge movement produced by short voltage-clamp depolarising pulses. Spontaneous Ca2+ release at rest was assessed with the Ca2+-sensitive dye Fluo-4. The rate of SR Ca2+ uptake was assessed from the time course of cytosolic Ca2+ recovery after the end of voltage excitation using the Ca2+-sensitive dye Fluo-4FF. The response to a fatigue-stimulation protocol was determined from the time course of decline of the peak Fluo-4FF Ca2+ transients elicited by 30 trains of 5-ms-long depolarising pulses delivered at 100 Hz. RESULTS: The transverse tubule network architecture and density were well preserved in the fibres from the obese mice. The CaV1.1 Ca2+ current and voltage-sensing properties were also largely unaffected with mean values for maximum conductance and maximum amount of charge of 234 ± 12 S/F and 30.7 ± 1.6 nC/µF compared with 196 ± 13 S/F and 32.9 ± 2.0 nC/µF in fibres from mice fed with the standard diet, respectively. Voltage-activated SR Ca2+ release through ryanodine receptors also exhibited very similar properties in the two groups with mean values for maximum rate of Ca2+ release of 76.0 ± 6.5 and 78.1 ± 4.4 µmol l-1 ms-1, in fibres from control and obese mice, respectively. The response to a fatigue protocol was also largely unaffected in fibres from the obese mice, and so were the rate of cytosolic Ca2+ removal and the spontaneous Ca2+ release activity at rest. CONCLUSIONS/INTERPRETATION: The functional properties of the main mechanisms involved in the control of muscle Ca2+ homeostasis are well preserved in muscle fibres from obese mice, at the level of both the plasma membrane and of the SR. We conclude that intracellular Ca2+ handling and excitation-contraction coupling in skeletal muscle fibres are not primary targets of obesity and type 2 diabetes. Graphical abstract.


Subject(s)
Calcium/metabolism , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium Signaling/physiology , Cell Membrane/metabolism , Mice , Mice, Obese
7.
Med Sci (Paris) ; 35 Hors série n° 2: 39-42, 2019 Nov.
Article in French | MEDLINE | ID: mdl-31859630

ABSTRACT

Bethlem myopathy (BM) is a neuromuscular disease characterized by joint contractures and muscle weakness. BM is caused by mutations in one of the genes encoding one of the three α-chains of collagen VI (COLVI), a component of the skeletal muscle extracellular matrix. Nowadays, an unresolved question is to understand how alteration of COLVI located outside the muscle cells leads to functional modifications in muscle fibers. The zebrafish model col6a1Δex14 is currently the unique animal model of the disease since it is the only model to reproduce a mutation that is the most frequently found in BM patients. In patient and col6a1Δex14 zebrafish muscles, the structure of the sarcoplasmic reticulum has been found to be altered, thus suggesting dysfunction in intracellular Ca2+ handling and/or in ion channels that are known to control Ca2+ homeostasis and to play pivotal roles in muscle function and pathogenesis. Therefore, our project aims at exploring the properties of ion channels and intracellular Ca2+ regulation using electrophysiological approaches and intracellular Ca2+ measurement at rest and during activity in isolated muscle fibers from col6a1Δex14 zebrafish. On one hand, this project should contribute to decipher how alteration in an extracellular matrix component transduces pathogenic signals within muscle fiber and should possibly lead to identify therapeutic targets for this currently incurable disease. On the other hand, because functional studies on zebrafish muscle cells are scarce, this project will provide a sound database on the electrophysiological properties of this cell model.


TITLE: Étude physiopathologique de la myopathie de Bethlem à l'aide d'un modèle de poisson zèbre - 16es JSFM : Prix Master 2018. ABSTRACT: La myopathie de Bethlem (BM) est une maladie caractérisée par des rétractions et une faiblesse musculaires. Cette pathologie résulte de mutations dans un des gènes codant l'une des trois chaînes α du collagène VI (COLVI), un composant de la matrice extracellulaire musculaire squelettique. Aujourd'hui, une question non résolue est de comprendre comment l'altération de COLVI présent à l'extérieur des cellules musculaires conduit à des modifications fonctionnelles dans les fibres musculaires. Le modèle poisson zèbre col6a1Δex14 est actuellement un modèle animal unique de la BM puisqu'il est le seul à reproduire spécifiquement l'une des mutations la plus fréquemment retrouvée chez les patients. Chez les patients et le poisson col6a1Δex14, la structure du réticulum sarcoplasmique est altérée, suggérant une perturbation de l'homéostasie calcique musculaire et/ou des canaux ioniques qui, en contrôlant cette homéostasie, jouent un rôle crucial dans la fonction et la pathogenèse musculaire. Notre projet vise ainsi à étudier à l'aide de techniques électrophysiologiques et de mesure de Ca2+ les propriétés des canaux ioniques et la régulation du Ca2+ intracellulaire au repos et en activité dans la fibre musculaire du poisson col6a1Δex14. Nos recherches devraient contribuer à mieux comprendre comment la perturbation de la matrice influe sur la fonction musculaire et conduire à terme à identifier des cibles thérapeutiques pour traiter cette maladie actuellement incurable. Enfin, du fait de la rareté des études fonctionnelles sur la cellule musculaire de poisson zèbre, ce projet permettra de constituer une base de données de référence sur les propriétés électrophysiologiques de ce modèle.


Subject(s)
Collagen Type VI/genetics , Contracture/genetics , Contracture/pathology , Disease Models, Animal , Muscular Dystrophies/congenital , Zebrafish Proteins/genetics , Zebrafish , Animals , Animals, Genetically Modified , Awards and Prizes , France , Humans , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Signal Transduction/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/growth & development
8.
Am J Physiol Cell Physiol ; 315(5): C776-C779, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30281323

ABSTRACT

High metabolic activity and existence of a large transmembrane inward electrochemical gradient for H+ at rest promote intracellular acidification of skeletal muscle. Exchangers and cotransports efficiently contend against accumulation of intracellular H+ and associated deleterious effects on muscle functions. Voltage-gated H+ channels have also been found to represent another H+ extrusion pathway in cultured muscle cells. Up to now, the skeletal muscle cell was therefore the unique vertebrate excitable cell in which voltage-gated H+ currents have been described. In this study, we show that, unlike cultured cells, single mouse muscle fibers do not generate H+ currents in response to depolarization. In contrast, expression of human voltage-gated H+ channels in mouse muscle gives rise to robust outward voltage-gated H+ currents. This result excludes that inappropriate experimental conditions may have failed to reveal voltage-gated H+ currents in control muscle. This work therefore demonstrates that fully differentiated mammalian muscle fibers do not express functional voltage-gated H+ channels and consequently can no longer be considered as the only vertebrate excitable cells exhibiting voltage-gated H+ currents.


Subject(s)
Ion Channels/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Animals , Cell Differentiation/drug effects , Gene Expression Regulation, Developmental/drug effects , Humans , Ion Channel Gating/genetics , Mice , Muscle, Skeletal/cytology , Neuromuscular Depolarizing Agents/pharmacology , Patch-Clamp Techniques
9.
J Gen Physiol ; 150(8): 1163-1177, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29899059

ABSTRACT

Ion channel activity in the plasma membrane of living cells generates voltage changes that are critical for numerous biological functions. The membrane of the endoplasmic/sarcoplasmic reticulum (ER/SR) is also endowed with ion channels, but whether changes in its voltage occur during cellular activity has remained ambiguous. This issue is critical for cell functions that depend on a Ca2+ flux across the reticulum membrane. This is the case for contraction of striated muscle, which is triggered by opening of ryanodine receptor Ca2+ release channels in the SR membrane in response to depolarization of the transverse invaginations of the plasma membrane (the t-tubules). Here, we use targeted expression of voltage-sensitive fluorescence resonance energy transfer (FRET) probes of the Mermaid family in differentiated muscle fibers to determine whether changes in SR membrane voltage occur during depolarization-contraction coupling. In the absence of an SR targeting sequence, FRET signals from probes present in the t-tubule membrane allow calibration of the voltage sensitivity and amplitude of the response to voltage-clamp pulses. Successful SR targeting of the probes was achieved using an N-terminal domain of triadin, which completely eliminates voltage-clamp-activated FRET signals from the t-tubule membrane of transfected fibers. In fibers expressing SR-targeted Mermaid probes, activation of SR Ca2+ release in the presence of intracellular ethyleneglycol-bis(ß-amino-ethyl ether)-N,N,N',N'-tetra acetic acid (EGTA) results in an accompanying FRET signal. We find that this signal results from pH sensitivity of the probe, which detects cytosolic acidification because of the release of protons upon Ca2+ binding to EGTA. When EGTA is substituted with either 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or the contraction blocker N-benzyl-p-toluene sulfonamide, we find no indication of a substantial change in the FRET response caused by a voltage change. These results suggest that the ryanodine receptor-mediated SR Ca2+ efflux is well balanced by concomitant counterion currents across the SR membrane.


Subject(s)
Muscle Fibers, Skeletal/physiology , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/physiology , Animals , Biosensing Techniques , Fluorescence Resonance Energy Transfer , In Vitro Techniques , Male , Mice , Minor Histocompatibility Antigens , Nuclear Pore Complex Proteins , Patch-Clamp Techniques
10.
J Gen Physiol ; 149(12): 1139-1148, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29114033

ABSTRACT

Type 1 hypokalemic periodic paralysis (HypoPP1) is a poorly understood genetic neuromuscular disease characterized by episodic attacks of paralysis associated with low blood K+ The vast majority of HypoPP1 mutations involve the replacement of an arginine by a neutral residue in one of the S4 segments of the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel, which is thought to generate a pathogenic gating pore current. The V876E HypoPP1 mutation has the peculiarity of being located in the S3 segment of domain III, rather than an S4 segment, raising the question of whether such a mutation induces a gating pore current. Here we successfully transfer cDNAs encoding GFP-tagged human wild-type (WT) and V876E HypoPP1 mutant α1 subunits into mouse muscles by electroporation. The expression profile of these WT and V876E channels shows a regular striated pattern, indicative of their localization in the t-tubule membrane. In addition, L-type Ca2+ current properties are the same in V876E and WT fibers. However, in the presence of an external solution containing low-Cl- and lacking Na+ and K+, V876E fibers display an elevated leak current at negative voltages that is increased by external acidification to a higher extent in V876E fibers, suggesting that the leak current is carried by H+ ions. However, in the presence of Tyrode's solution, the rate of change in intracellular pH produced by external acidification was not significantly different in V876E and WT fibers. Simultaneous measurement of intracellular Na+ and current in response to Na+ readmission in the external solution reveals a rate of Na+ influx associated with an inward current, which are both significantly larger in V876E fibers. These data suggest that the V876E mutation generates a gating pore current that carries strong resting Na+ inward currents in physiological conditions that are likely responsible for the severe HypoPP1 symptoms associated with this mutation.


Subject(s)
Caveolin 1/metabolism , Hypokalemic Periodic Paralysis/metabolism , Ion Channel Gating , Mutation, Missense , Sodium/metabolism , Animals , Caveolin 1/chemistry , Caveolin 1/genetics , Cells, Cultured , Humans , Hypokalemic Periodic Paralysis/genetics , Mice , Muscle Fibers, Skeletal/metabolism
11.
J Physiol ; 595(24): 7369-7382, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29071728

ABSTRACT

KEY POINTS: Dynamin 2 is a ubiquitously expressed protein involved in membrane trafficking processes. Mutations in the gene encoding dynamin 2 are responsible for a congenital myopathy associated with centrally located nuclei in the muscle fibres. Using muscle fibres from a mouse model of the most common mutation responsible for this disease in humans, we tested whether altered Ca2+ signalling and excitation-contraction coupling contribute to muscle weakness. The plasma membrane network that carries the electrical excitation is moderately perturbed in the diseased muscle fibres. The excitation-activated Ca2+ input fluxes across both the plasma membrane and the membrane of the sarcoplasmic reticulum are defective in the diseased fibres, which probably contributes to muscle weakness in patients. ABSTRACT: Mutations in the gene encoding dynamin 2 (DNM2) are responsible for autosomal dominant centronuclear myopathy (AD-CNM). We studied the functional properties of Ca2+ signalling and excitation-contraction (EC) coupling in muscle fibres isolated from a knock-in (KI) mouse model of the disease, using confocal imaging and the voltage clamp technique. The transverse-tubule network organization appeared to be unaltered in the diseased fibres, although its density was reduced by ∼10% compared to that in control fibres. The density of Ca2+ current through CaV1.1 channels and the rate of voltage-activated sarcoplasmic reticulum Ca2+ release were reduced by ∼60% and 30%, respectively, in KI vs. control fibres. In addition, Ca2+ release in the KI fibres reached its peak value 10-50 ms later than in control ones. Activation of Ca2+ transients along the longitudinal axis of the fibres was more heterogeneous in the KI than in the control fibres, with the difference being exacerbated at intermediate membrane voltages. KI fibres exhibited spontaneous Ca2+ release events that were almost absent from control fibres. Overall, the results of the present study demonstrate that Ca2+ signalling and EC coupling exhibit a number of dysfunctions likely contributing to muscle weakness in DNM2-related AD-CNM.


Subject(s)
Dynamin II/genetics , Excitation Contraction Coupling , Muscle Fibers, Skeletal/metabolism , Myopathies, Structural, Congenital/metabolism , Animals , Calcium Channels, L-Type/metabolism , Calcium Signaling , Cells, Cultured , Membrane Potentials , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/physiology , Mutation, Missense , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/physiopathology
12.
J Physiol ; 595(20): 6417-6428, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28857175

ABSTRACT

KEY POINTS: Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . Acute expression of human wild-type and R1239H HypoPP1 mutant α1 subunits in mature mouse muscles showed that R1239H fibres displayed Ca2+ currents of reduced amplitude and larger resting leak inward current increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data suggest that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore and could explain why paralytic attacks preferentially occur during the recovery period following muscle exercise. ABSTRACT: Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . The present study aimed at identifying the changes in muscle fibre electrical properties induced by acute expression of the R1239H hypokalaemic periodic paralysis human mutant α1 subunit of Ca2+ channels in a mature muscle environment to better understand the pathophysiological mechanisms involved in this disorder. We transferred genes encoding wild-type and R1239H mutant human Ca2+ channels into hindlimb mouse muscle by electroporation and combined voltage-clamp and intracellular pH measurements on enzymatically dissociated single muscle fibres. As compared to fibres expressing wild-type α1 subunits, R1239H mutant-expressing fibres displayed Ca2+ currents of reduced amplitude and a higher resting leak inward current that was increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data indicate that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore created by the mutation and that external acidification favours onset of muscle paralysis by potentiating H+ depolarizing currents and inhibiting resting inward rectifier K+ currents. Our results could thus explain why paralytic attacks preferentially occur during the recovery period following intense muscle exercise.


Subject(s)
Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/physiology , Hypokalemic Periodic Paralysis , Muscle Fibers, Skeletal/physiology , Animals , Hydrogen-Ion Concentration , Male , Mice , Mutation, Missense , Patch-Clamp Techniques
13.
Proc Natl Acad Sci U S A ; 113(50): 14432-14437, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911767

ABSTRACT

Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation-contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process.


Subject(s)
Calcium Signaling/physiology , Phosphoinositide-3 Kinase Inhibitors , Protein Tyrosine Phosphatases, Non-Receptor/deficiency , Androstadienes/pharmacology , Animals , Calcium Signaling/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Excitation Contraction Coupling/drug effects , Excitation Contraction Coupling/physiology , In Vitro Techniques , Male , Mice , Mice, 129 Strain , Mice, Knockout , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/physiopathology , Patch-Clamp Techniques , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Wortmannin
14.
J Gen Physiol ; 145(4): 315-30, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25825170

ABSTRACT

Phosphoinositides act as signaling molecules in numerous cellular transduction processes, and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) regulates the function of several types of plasma membrane ion channels. We investigated the potential role of PtdIns(4,5)P2 in Ca(2+) homeostasis and excitation-contraction (E-C) coupling of mouse muscle fibers using in vivo expression of the voltage-sensing phosphatases (VSPs) Ciona intestinalis VSP (Ci-VSP) or Danio rerio VSP (Dr-VSP). Confocal images of enhanced green fluorescent protein-tagged Dr-VSP revealed a banded pattern consistent with VSP localization within the transverse tubule membrane. Rhod-2 Ca(2+) transients generated by 0.5-s-long voltage-clamp depolarizing pulses sufficient to elicit Ca(2+) release from the sarcoplasmic reticulum (SR) but below the range at which VSPs are activated were unaffected by the presence of the VSPs. However, in Ci-VSP-expressing fibers challenged by 5-s-long depolarizing pulses, the Ca(2+) level late in the pulse (3 s after initiation) was significantly lower at 120 mV than at 20 mV. Furthermore, Ci-VSP-expressing fibers showed a reversible depression of Ca(2+) release during trains, with the peak Ca(2+) transient being reduced by ∼30% after the application of 10 200-ms-long pulses to 100 mV. A similar depression was observed in Dr-VSP-expressing fibers. Cav1.1 Ca(2+) channel-mediated current was unaffected by Ci-VSP activation. In fibers expressing Ci-VSP and a pleckstrin homology domain fused with monomeric red fluorescent protein (PLCδ1PH-mRFP), depolarizing pulses elicited transient changes in mRFP fluorescence consistent with release of transverse tubule-bound PLCδ1PH domain into the cytosol; the voltage sensitivity of these changes was consistent with that of Ci-VSP activation, and recovery occurred with a time constant in the 10-s range. Our results indicate that the PtdIns(4,5)P2 level is tightly maintained in the transverse tubule membrane of the muscle fibers, and that VSP-induced depletion of PtdIns(4,5)P2 impairs voltage-activated Ca(2+) release from the SR. Because Ca(2+) release is thought to be independent from InsP3 signaling, the effect likely results from an interaction between PtdIns(4,5)P2 and a protein partner of the E-C coupling machinery.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Muscle Fibers, Skeletal/metabolism , Phosphoric Monoester Hydrolases/metabolism , Action Potentials , Animals , Calcium/metabolism , Cells, Cultured , Mice , Muscle Fibers, Skeletal/physiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoric Monoester Hydrolases/genetics , Sarcoplasmic Reticulum/metabolism
15.
J Gen Physiol ; 139(3): 209-18, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22371362

ABSTRACT

Under resting conditions, external Ca(2+) is known to enter skeletal muscle cells, whereas Ca(2+) stored in the sarcoplasmic reticulum (SR) leaks into the cytosol. The nature of the pathways involved in the sarcolemmal Ca(2+) entry and in the SR Ca(2+) leak is still a matter of debate, but several lines of evidence suggest that these Ca(2+) fluxes are up-regulated in Duchenne muscular dystrophy. We investigated here SR calcium permeation at resting potential and in response to depolarization in voltage-controlled skeletal muscle fibers from control and mdx mice, the mouse model of Duchenne muscular dystrophy. Using the cytosolic Ca(2+) dye Fura2, we first demonstrated that the rate of Ca(2+) increase in response to cyclopiazonic acid (CPA)-induced inhibition of SR Ca(2+)-ATPases at resting potential was significantly higher in mdx fibers, which suggests an elevated SR Ca(2+) leak. However, removal of external Ca(2+) reduced the rate of CPA-induced Ca(2+) increase in mdx and increased it in control fibers, which indicates an up-regulation of sarcolemmal Ca(2+) influx in mdx fibers. Fibers were then loaded with the low-affinity Ca(2+) dye Fluo5N-AM to measure intraluminal SR Ca(2+) changes. Trains of action potentials, chloro-m-cresol, and depolarization pulses evoked transient Fluo5N fluorescence decreases, and recovery of voltage-induced Fluo5N fluorescence changes were inhibited by CPA, demonstrating that Fluo5N actually reports intraluminal SR Ca(2+) changes. Voltage dependence and magnitude of depolarization-induced SR Ca(2+) depletion were found to be unchanged in mdx fibers, but the rate of the recovery phase that followed depletion was found to be faster, indicating a higher SR Ca(2+) reuptake activity in mdx fibers. Overall, CPA-induced SR Ca(2+) leak at -80 mV was found to be significantly higher in mdx fibers and was potentiated by removal of external Ca(2+) in control fibers. The elevated passive SR Ca(2+) leak may contribute to alteration of Ca(2+) homeostasis in mdx muscle.


Subject(s)
Calcium Signaling/physiology , Muscle Fibers, Skeletal/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Cell Membrane Permeability , Cytosol/metabolism , Disease Models, Animal , Electrophysiological Phenomena , Fluorescent Dyes , In Vitro Techniques , Male , Membrane Potentials , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Microscopy, Confocal , Models, Biological , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism
16.
J Biol Chem ; 286(51): 43717-43725, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22020936

ABSTRACT

Junctophilins (JPs) anchor the endo/sarcoplasmic reticulum to the plasma membrane, thus contributing to the assembly of junctional membrane complexes in striated muscles and neurons. Recent studies have shown that JPs may be also involved in regulating Ca2+ homeostasis. Here, we report that in skeletal muscle, JP1 and JP2 are part of a complex that, in addition to ryanodine receptor 1 (RyR1), includes caveolin 3 and the dihydropyridine receptor (DHPR). The interaction between JPs and DHPR was mediated by a region encompassing amino acids 230-369 and amino acids 216-399 in JP1 and JP2, respectively. Immunofluorescence studies revealed that the pattern of DHPR and RyR signals in C2C12 cells knocked down for JP1 and JP2 was rather diffused and characterized by smaller puncta in contrast to that observed in control cells. Functional experiments revealed that down-regulation of JPs in differentiated C2C12 cells resulted in a reduction of intramembrane charge movement and the L-type Ca2+ current accompanied by a reduced number of DHPRs at the plasma membrane, whereas there was no substantial alteration in Ca2+ release from the sterol regulatory element-binding protein. Altogether, these results suggest that JP1 and JP2 can facilitate the assembly of DHPR with other proteins of the excitation-contraction coupling machinery.


Subject(s)
Calcium Channels, L-Type/chemistry , Membrane Proteins/chemistry , Muscle, Skeletal/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling , Cell Differentiation , Glutathione Transferase/metabolism , Humans , Male , Mice , Models, Biological , Muscles/metabolism , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
17.
Int J Biochem Cell Biol ; 43(5): 713-20, 2011 May.
Article in English | MEDLINE | ID: mdl-21262376

ABSTRACT

Caveolin-3 is the striated muscle specific isoform of the scaffolding protein family of caveolins and has been shown to interact with a variety of proteins, including ion channels. Mutations in the human CAV3 gene have been associated with several muscle disorders called caveolinopathies and among these, the P104L mutation (Cav-3(P104L)) leads to limb girdle muscular dystrophy of type 1C characterized by the loss of sarcolemmal caveolin. There is still no clear-cut explanation as to specifically how caveolin-3 mutations lead to skeletal muscle wasting. Previous results argued in favor of a role for caveolin-3 in dihydropyridine receptor (DHPR) functional regulation and/or T-tubular membrane localization. It appeared worth closely examining such a functional link and investigating if it could result from the direct physical interaction of the two proteins. Transient expression of Cav-3(P104L) or caveolin-3 specific siRNAs in C2C12 myotubes both led to a significant decrease of the L-type Ca(2+) channel maximal conductance. Immunolabeling analysis of adult skeletal muscle fibers revealed the colocalization of a pool of caveolin-3 with the DHPR within the T-tubular membrane. Caveolin-3 was also shown to be present in DHPR-containing triadic membrane preparations from which both proteins co-immunoprecipitated. Using GST-fusion proteins, the I-II loop of Ca(v)1.1 was identified as the domain interacting with caveolin-3, with an apparent affinity of 60nM. The present study thus revealed a direct molecular interaction between caveolin-3 and the DHPR which is likely to underlie their functional link and whose loss might therefore be involved in pathophysiological mechanisms associated to muscle caveolinopathies.


Subject(s)
Calcium Channels, L-Type/metabolism , Caveolin 3/metabolism , Muscle, Skeletal/metabolism , Animals , Calcium/metabolism , Caveolin 3/deficiency , Caveolin 3/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Mice , Muscle Fibers, Skeletal/metabolism , Porosity , Protein Binding , Protein Transport , RNA, Small Interfering/genetics
18.
Pflugers Arch ; 457(2): 361-75, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18509671

ABSTRACT

Caveolins are plasma-membrane-associated proteins potentially involved in a variety of signalling pathways. Different mutations in CAV3, the gene encoding for the muscle-specific isoform caveolin-3 (Cav-3), lead to muscle diseases, but the underlying molecular mechanisms remain largely unknown. Here, we explored the functional consequences of a Cav-3 mutation (P104L) inducing the 1C type limb-girdle muscular dystrophy (LGMD 1C) in human on intracellular Ca(2+) regulation of adult skeletal muscle fibres. A YFP-tagged human Cav-3(P104L) mutant was expressed in vivo in muscle fibres from mouse. Western blot analysis revealed that expression of this mutant led to an approximately 80% drop of the level of endogenous Cav-3. The L-type Ca(2+) current density was found largely reduced in fibres expressing the Cav-3(P104L) mutant, with no change in the voltage dependence of activation and inactivation. Interestingly, the maximal density of intramembrane charge movement was unaltered in the Cav-3(P104L)-expressing fibres, suggesting no change in the total amount of functional voltage-sensing dihydropyridine receptors (DHPRs). Also, there was no obvious alteration in the properties of voltage-activated Ca(2+) transients in the Cav-3(P104L)-expressing fibres. Although the actual role of the Ca(2+) channel function of the DHPR is not clearly established in adult skeletal muscle, its specific alteration by the Cav-3(P104L) mutant suggests that it may be involved in the physiopathology of LGMD 1C.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Caveolin 3/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Animals , Caveolin 3/genetics , Cell Membrane/metabolism , Electroporation , Gene Transfer Techniques , Humans , Kinetics , Male , Membrane Potentials , Mice , Muscle Contraction , Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/physiopathology , Mutation , Recombinant Fusion Proteins/metabolism
19.
J Physiol ; 586(2): 441-57, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18006577

ABSTRACT

The physiological properties and role of the type 3 ryanodine receptor (RyR3), a calcium release channel expressed in a wide variety of cell types, remain mysterious. We forced, in vivo, the expression of RyR3 in adult mouse skeletal muscle fibres using a GFP-RyR3 DNA construct. GFP fluorescence was found within spatially restricted regions of muscle fibres where it exhibited a sarcomere-related banded pattern consistent with a localization within or near the junctional sarcoplasmic reticulum membrane. Immunostaining confirmed the presence of RyR3 together with RyR1 within the GFP-positive areas. In approximately 90% of RyR3-positive fibres microinjected with the calcium indicator fluo-3, we detected repetitive spontaneous transient elevations of intracellular Ca2+ that persisted when fibres were voltage-clamped at -80 mV. These Ca2+ transients remained essentially confined to the RyR3 expression region. They ranged from wide local events to propagating Ca2+ waves and were in some cases associated with local contractile activity. When voltage-clamp depolarizations were applied while fluo-3 or rhod-2 fluorescence was measured within the RyR3-expressing region, no voltage-evoked 'spark-like' elementary Ca2+ release event could be detected. Still global voltage-activated Ca2+ release exhibited a prominent early peak within the RyR3-expressing regions. Measurements were also taken from muscles fibres expressing a GFP-RyR1 construct; positive fibres also yielded a local banded pattern of GFP fluorescence but exhibited no spontaneous Ca2+ release. Results demonstrate that RyR3 is a very potent source of voltage-independent Ca2+ release activity. Conversely we find no evidence that it could contribute to the production of discrete voltage-activated Ca2+ release events in differentiated mammalian skeletal muscle.


Subject(s)
Calcium/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling/physiology , Electrophysiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Patch-Clamp Techniques , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism , Transfection
20.
J Physiol ; 580(Pt.3): 745-54, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17317753

ABSTRACT

Caveolins are membrane scaffolding proteins that associate with and regulate a variety of signalling proteins, including ion channels. A deficiency in caveolin-3 (Cav-3), the major striated muscle isoform, is responsible for skeletal muscle disorders, such as limb-girdle muscular dystrophy 1C (LGMD 1C). The molecular mechanisms leading to the muscle wasting that characterizes this pathology are poorly understood. Here we show that a loss of Cav-3 induced by the expression of the LGMD 1C-associated mutant P104L (Cav-3(P104L)) provokes a reduction by half of the maximal conductance of the voltage-dependent L-type Ca(2+) channel in mouse primary cultured myotubes and fetal skeletal muscle fibres. Confocal immunomiscrocopy indicated a colocalization of Cav-3 and Ca(v)1.1, the pore-forming subunit of the L-type Ca(2+) channel, at the surface membrane and in the developing T-tubule network in control myotubes and fetal fibres. In myotubes expressing Cav-3(P104L), the loss of Cav-3 was accompanied by a 66% reduction in Ca(v)1.1 mean labelling intensity. Our results suggest that Cav-3 is involved in L-type Ca(2+) channel membrane function and localization in skeletal muscle cells and that an alteration of L-type Ca(2+) channels could be involved in the physiopathological mechanisms of caveolinopathies.


Subject(s)
Calcium Channels, L-Type/metabolism , Caveolin 3/deficiency , Caveolin 3/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Mutation , Animals , Caveolin 3/metabolism , Cells, Cultured , Electric Conductivity , Embryo, Mammalian , Leucine , Mice , Muscle Cells/metabolism , Muscle Fibers, Skeletal/metabolism , Proline , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...