Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 28(9): e18344, 2024 May.
Article in English | MEDLINE | ID: mdl-38685679

ABSTRACT

Single cell RNA sequencing of human full thickness Crohn's disease (CD) small bowel resection specimens was used to identify potential therapeutic targets for stricturing (S) CD. Using an unbiased approach, 16 cell lineages were assigned within 14,539 sequenced cells from patient-matched SCD and non-stricturing (NSCD) preparations. SCD and NSCD contained identical cell types. Amongst immune cells, B cells and plasma cells were selectively increased in SCD samples. B cell subsets suggested formation of tertiary lymphoid tissue in SCD and compared with NSCD there was an increase in IgG, and a decrease in IgA plasma cells, consistent with their potential role in CD fibrosis. Two Lumican-positive fibroblast subtypes were identified and subclassified based on expression of selectively enriched genes as fibroblast clusters (C) 12 and C9. Cells within these clusters expressed the profibrotic genes Decorin (C12) and JUN (C9). C9 cells expressed ACTA2; ECM genes COL4A1, COL4A2, COL15A1, COL6A3, COL18A1 and ADAMDEC1; LAMB1 and GREM1. GO and KEGG Biological terms showed extracellular matrix and stricture organization associated with C12 and C9, and regulation of WNT pathway genes with C9. Trajectory and differential gene analysis of C12 and C9 identified four sub-clusters. Intra sub-cluster gene analysis detected 13 co-regulated gene modules that aligned along predicted pseudotime trajectories. CXCL14 and ADAMDEC1 were key markers in module 1. Our findings support further investigation of fibroblast heterogeneity and interactions with local and circulating immune cells at earlier time points in fibrosis progression. Breaking these interactions by targeting one or other population may improve therapeutic management for SCD.


Subject(s)
B-Lymphocytes , Crohn Disease , Fibroblasts , Single-Cell Analysis , Humans , Crohn Disease/genetics , Crohn Disease/pathology , Crohn Disease/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Single-Cell Analysis/methods , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Male , Female , Adult , Gene Expression Profiling
2.
J Crohns Colitis ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38069679

ABSTRACT

BACKGROUND & AIMS: No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterised fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS: We undertook immunohistochemistry, metabolic, signalling pathway and Epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/ NSCD fibroblasts were cultured with TGFß and valproic acid [VPA]. RESULTS: Stricturing CD was characterised by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFß-stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appear "metabolically primed" and responded more strongly to both TGFß and VPA. Treatment with VPA revealed TGFß-dependent and independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype, and metabolic priming, characterise SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFß-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis.

3.
Clin Sci (Lond) ; 136(19): 1405-1423, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156078

ABSTRACT

Intestinal fibrosis and stricture formation is an aggressive complication of Crohns disease (CD), linked to increased morbidity and costs. The present study investigates the contribution of Wingless-Int-1 (Wnt) signalling to intestinal fibrogenesis, considers potential cross-talk between Wnt and transforming growth factor ß1 (TGFß) signalling pathways, and assesses the therapeutic potential of small-molecule Wnt inhibitors. ß-catenin expression was explored by immunohistochemistry (IHC) in formalin-fixed paraffin embedded (FFPE) tissue from patient-matched nonstrictured (NSCD) and strictured (SCD) intestine (n=6 pairs). Functional interactions between Wnt activation, TGFß signalling, and type I collagen (Collagen-I) expression were explored in CCD-18Co cells and primary CD myofibroblast cultures established from surgical resection specimens (n=16) using small-molecule Wnt inhibitors and molecular techniques, including siRNA-mediated gene knockdown, immunofluorescence (IF), Wnt gene expression arrays, and western blotting. Fibrotic SCD tissue was marked by an increase in ß-catenin-positive cells. In vitro, activation of Wnt-ß-catenin signalling increased Collagen-I expression in CCD-18Co cells. Conversely, ICG-001, an inhibitor of ß-catenin signalling, reduced Collagen-I expression in cell lines and primary CD myofibroblasts. TGFß increased ß-catenin protein levels but did not activate canonical Wnt signalling. Rather, TGFß up-regulated WNT5B, a noncanonical Wnt ligand, and the Wnt receptor FZD8, which contributed directly to the up-regulation of Collagen-I through a ß-catenin-independent mechanism. Treatment of CCD-18Co fibroblasts and patient-derived myofibroblasts with the FZD8 inhibitor 3235-0367 reduced extracellular matrix (ECM) expression. Our data highlight small-molecule Wnt inhibitors of both canonical and noncanonical Wnt signalling, as potential antifibrotic drugs to treat SCD intestinal fibrosis. They also highlight the importance of the cross-talk between Wnt and TGFß signalling pathways in CD intestinal fibrosis.


Subject(s)
Crohn Disease , beta Catenin , Collagen Type I/metabolism , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Fibrosis , Formaldehyde/metabolism , Humans , Intestines , Ligands , Myofibroblasts/metabolism , RNA, Small Interfering/metabolism , Transforming Growth Factor beta1/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
4.
Brain Behav Immun ; 87: 689-702, 2020 07.
Article in English | MEDLINE | ID: mdl-32126289

ABSTRACT

Patients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21 kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.


Subject(s)
Annexin A1 , Autoimmune Diseases , Animals , Humans , Mice , Mice, Transgenic , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...