Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Sci Rep ; 13(1): 22534, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110438

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Vascular Diseases , Humans , Hypertension, Pulmonary/pathology , Pulmonary Artery/pathology , Endothelial Cells/metabolism , Pulmonary Arterial Hypertension/pathology , Familial Primary Pulmonary Hypertension/metabolism , Vascular Diseases/pathology , Wnt Signaling Pathway/genetics
2.
Mol Oncol ; 17(11): 2356-2379, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36635880

ABSTRACT

Dysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors. These included WAVE2 complex components such as CYFIP1, NCKAP1, or WASF1, confirming the known role of ABI1 in the regulation of actin-polymerization-dependent processes. We also identified proteins associated with the TAK1-IKK pathway, including TAK1, TAB2, and RIPK1, denoting a newly identified function of ABI1 in TAK1-NF-κB inflammatory signaling. Functional assays using TNFα-stimulated, ABI1-overexpressing or ABI1-deficient cells showed effects on the TAK1-NF-kB pathway-dependent signaling to RIPK1, with ABI1-knockout cells being less susceptible to TNFα-induced, RIPK1-mediated, TAK1-dependent apoptosis. In sum, our PDL-based strategy enabled mapping of the ABI1 proximal interactome, thus revealing a previously unknown role of this adaptor protein in TAK1/RIPK1-based regulation of cell death and survival.


Subject(s)
Proteomics , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , NF-kappa B/metabolism , Apoptosis/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism
3.
Nat Commun ; 12(1): 6132, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675200

ABSTRACT

Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.


Subject(s)
Cell Culture Techniques/instrumentation , Extracellular Matrix/chemistry , Hydrogels/chemistry , Pluripotent Stem Cells/cytology , Animals , Biomechanical Phenomena , Cell Adhesion , Cell Differentiation , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Mechanotransduction, Cellular , Mice , Pluripotent Stem Cells/chemistry , Pluripotent Stem Cells/metabolism
4.
Am J Clin Oncol ; 44(7): 374-382, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34014842

ABSTRACT

The development of androgen resistance in advanced prostate cancer remains a challenging clinical problem. Because androgen deprivation therapy constitutes the backbone of first-line treatments for metastatic prostate cancer, the phenotypic switch from an androgen-dependent to an androgen-independent growth state limits the treatment options for these patients. This critical change from an androgen-dependent to an androgen-independent growth state can be regulated by the B-cell lymphoma gene 2 (BCL-2) family of apoptotic proteins. While the roles of BCL-2 protein family members in the carcinogenesis of prostate cancer have been well-studied, emerging data also delineates their modulation of disease progression to castration-resistant prostate cancer (CRPC). Over the past 2 decades, investigators have sought to describe the mechanisms that underpin this development at the molecular level, yet no recent literature has consolidated these findings in a dedicated review. As new classes of BCL-2 family inhibitors are finding indications for other cancer types, it is time to evaluate how such agents might find stable footing for the treatment of CRPC. Several trials to date have investigated BCL-2 inhibitors as therapeutic agents for CRPC. These therapies include selective BCL-2 inhibitors, pan-BCL-2 inhibitors, and novel inhibitors of MCL-1 and BCL-XL. This review details the research regarding the role of BCL-2 family members in the pathogenesis of prostate cancer and contextualizes these findings within the contemporary landscape of prostate cancer treatment.


Subject(s)
Drug Resistance, Neoplasm/physiology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/physiology , Androgens/therapeutic use , Drug Resistance, Neoplasm/drug effects , Humans , Male , Molecular Targeted Therapy/methods
5.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33857425

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Subject(s)
Brain Neoplasms/immunology , Epigenesis, Genetic , Glioblastoma/immunology , Immune Evasion/immunology , Myeloid Cells/immunology , Neoplastic Stem Cells/immunology , Tumor Microenvironment/immunology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
iScience ; 24(3): 102153, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33665571

ABSTRACT

Induced pluripotency provides a tool to explore mechanisms underlying establishment, maintenance, and differentiation of naive pluripotent stem cells (nPSCs). Here, we report that self-renewal of nPSCs requires minimal Sox2 expression (Sox2-low). Sox2-low nPSCs do not show impaired neuroectoderm specification and differentiate efficiently in vitro into all embryonic germ lineages. Strikingly, upon the removal of self-renewing cues Sox2-low nPSCs differentiate into both embryonic and extraembryonic cell fates in vitro and in vivo. This differs from previous studies which only identified conditions that allowed cells to differentiate to one fate or the other. At the single-cell level self-renewing Sox2-low nPSCs exhibit a naive molecular signature. However, they display a nearer trophoblast identity than controls and decreased ability of Oct4 to bind naïve-associated regulatory sequences. In sum, this work defines wild-type levels of Sox2 as a restrictor of developmental potential and suggests perturbation of naive network as a mechanism to increase cell plasticity.

7.
Cell Stem Cell ; 25(3): 388-406.e8, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422912

ABSTRACT

Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this "transition factor" underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.


Subject(s)
Blastocyst Inner Cell Mass/physiology , Germ Layers/physiology , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation , Cell Line , Cell Plasticity , Cellular Reprogramming , Female , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mice , Mice, Inbred C57BL , Octamer Transcription Factor-3/genetics , Signal Transduction
8.
Cell Syst ; 7(5): 482-495.e10, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30414923

ABSTRACT

The genome of pluripotent stem cells adopts a unique three-dimensional architecture featuring weakly condensed heterochromatin and large nucleosome-free regions. Yet, it is unknown whether structural loops and contact domains display characteristics that distinguish embryonic stem cells (ESCs) from differentiated cell types. We used genome-wide chromosome conformation capture and super-resolution imaging to determine nuclear organization in mouse ESC and neural stem cell (NSC) derivatives. We found that loss of pluripotency is accompanied by widespread gain of structural loops. This general architectural change correlates with enhanced binding of CTCF and cohesins and more pronounced insulation of contacts across chromatin boundaries in lineage-committed cells. Reprogramming NSCs to pluripotency restores the unique features of ESC domain topology. Domains defined by the anchors of loops established upon differentiation are enriched for developmental genes. Chromatin loop formation is a pervasive structural alteration to the genome that accompanies exit from pluripotency and delineates the spatial segregation of developmentally regulated genes.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mouse Embryonic Stem Cells/metabolism , Neural Stem Cells/metabolism , Animals , Cell Differentiation , Chromatin/ultrastructure , Mice , Mouse Embryonic Stem Cells/physiology , Mouse Embryonic Stem Cells/ultrastructure , Neural Stem Cells/physiology , Neural Stem Cells/ultrastructure , Protein Binding , Cohesins
9.
Development ; 145(21)2018 11 09.
Article in English | MEDLINE | ID: mdl-30413530

ABSTRACT

The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis.


Subject(s)
Callithrix/genetics , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Single-Cell Analysis , Transcriptome/genetics , Animals , Conserved Sequence/genetics , Endoderm/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Germ Layers/metabolism , Humans , Mice , Otx Transcription Factors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Transcription, Genetic
11.
Mol Cell ; 71(1): 56-72.e4, 2018 07 05.
Article in English | MEDLINE | ID: mdl-30008319

ABSTRACT

Chromatin remodeling complexes play essential roles in metazoan development through widespread control of gene expression, but the precise molecular mechanisms by which they do this in vivo remain ill defined. Using an inducible system with fine temporal resolution, we show that the nucleosome remodeling and deacetylation (NuRD) complex controls chromatin architecture and the protein binding repertoire at regulatory regions during cell state transitions. This is primarily exerted through its nucleosome remodeling activity while deacetylation at H3K27 follows changes in gene expression. Additionally, NuRD activity influences association of RNA polymerase II at transcription start sites and subsequent nascent transcript production, thereby guiding the establishment of lineage-appropriate transcriptional programs. These findings provide a detailed molecular picture of genome-wide modulation of lineage-specific transcription by an essential chromatin remodeling complex as well as insight into the orchestration of molecular events involved in transcriptional transitions in vivo. VIDEO ABSTRACT.


Subject(s)
Gene Expression Regulation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Acetylation , Animals , Cell Line , Histones/genetics , Histones/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Nucleosomes/genetics , RNA Polymerase II/genetics , Transcription Initiation Site
13.
Development ; 145(3)2018 02 07.
Article in English | MEDLINE | ID: mdl-29361568

ABSTRACT

Single-cell profiling techniques create opportunities to delineate cell fate progression in mammalian development. Recent studies have provided transcriptome data from human pre-implantation embryos, in total comprising nearly 2000 individual cells. Interpretation of these data is confounded by biological factors, such as variable embryo staging and cell-type ambiguity, as well as technical challenges in the collective analysis of datasets produced with different sample preparation and sequencing protocols. Here, we address these issues to assemble a complete gene expression time course spanning human pre-implantation embryogenesis. We identify key transcriptional features over developmental time and elucidate lineage-specific regulatory networks. We resolve post-hoc cell-type assignment in the blastocyst, and define robust transcriptional prototypes that capture epiblast and primitive endoderm lineages. Examination of human pluripotent stem cell transcriptomes in this framework identifies culture conditions that sustain a naïve state pertaining to the inner cell mass. Our approach thus clarifies understanding both of lineage segregation in the early human embryo and of in vitro stem cell identity, and provides an analytical resource for comparative molecular embryology.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cell Line , Cell Lineage/genetics , Cell Lineage/physiology , Chromosome Mapping , Embryo Culture Techniques , Embryonic Development/genetics , Embryonic Development/physiology , Gene Expression Profiling , Genetic Markers , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Humans , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primates , Single-Cell Analysis
14.
Development ; 144(15): 2748-2763, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765214

ABSTRACT

Much attention has focussed on the conversion of human pluripotent stem cells (PSCs) to a more naïve developmental status. Here we provide a method for resetting via transient histone deacetylase inhibition. The protocol is effective across multiple PSC lines and can proceed without karyotype change. Reset cells can be expanded without feeders with a doubling time of around 24 h. WNT inhibition stabilises the resetting process. The transcriptome of reset cells diverges markedly from that of primed PSCs and shares features with human inner cell mass (ICM). Reset cells activate expression of primate-specific transposable elements. DNA methylation is globally reduced to a level equivalent to that in the ICM and is non-random, with gain of methylation at specific loci. Methylation imprints are mostly lost, however. Reset cells can be re-primed to undergo tri-lineage differentiation and germline specification. In female reset cells, appearance of biallelic X-linked gene transcription indicates reactivation of the silenced X chromosome. On reconversion to primed status, XIST-induced silencing restores monoallelic gene expression. The facile and robust conversion routine with accompanying data resources will enable widespread utilisation, interrogation, and refinement of candidate naïve cells.


Subject(s)
DNA Transposable Elements/genetics , Epigenesis, Genetic/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , DNA Methylation/genetics , DNA Methylation/physiology , Embryo, Mammalian/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Flow Cytometry , Genes, X-Linked/genetics , Humans , In Situ Hybridization, Fluorescence , Mice , Real-Time Polymerase Chain Reaction , X Chromosome Inactivation/genetics
15.
Genes Dev ; 31(8): 757-773, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28465359

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets include cell cycle and epigenetic regulators (e.g., Foxo3, Plk1, Mycn, Dnmt1, Dnmt3b, and Tet3). Foxo3 is a critical repressed downstream effector that is controlled via a conserved FOXG1/SOX2-bound cis-regulatory element. Foxo3 loss, combined with exposure to the DNA methylation inhibitor 5-azacytidine, enforces astrocyte dedifferentiation. DNA methylation profiling in differentiating astrocytes identifies changes at multiple polycomb targets, including the promoter of Foxo3 In patient-derived GBM stem cells, CRISPR/Cas9 deletion of FOXG1 does not impact proliferation in vitro; however, upon transplantation in vivo, FOXG1-null cells display increased astrocyte differentiation and up-regulate FOXO3. In contrast, SOX2 ablation attenuates proliferation, and mutant cells cannot be expanded in vitro. Thus, FOXG1 and SOX2 operate in complementary but distinct roles to fuel unconstrained self-renewal in GBM stem cells via transcriptional control of core cell cycle and epigenetic regulators.


Subject(s)
Brain Neoplasms/physiopathology , Epigenomics , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/physiopathology , Nerve Tissue Proteins/genetics , Neural Stem Cells/cytology , SOXB1 Transcription Factors/genetics , Amino Acid Motifs , Astrocytes/cytology , Astrocytes/drug effects , Azacitidine/pharmacology , Brain Neoplasms/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Chromatin/metabolism , DNA Methylation , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/genetics , Humans , Mutation , Nerve Tissue Proteins/metabolism , Protein Binding , SOXB1 Transcription Factors/metabolism , Tumor Cells, Cultured
16.
Development ; 144(7): 1221-1234, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28174249

ABSTRACT

Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naïve pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naïve status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naïve cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.


Subject(s)
Cell Tracking , Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Lineage , Cell Self Renewal , DNA Methylation/genetics , Down-Regulation , Embryo, Mammalian/cytology , Embryonic Stem Cells/metabolism , Genes, Reporter , Germ Layers/cytology , Kinetics , Mice , Pluripotent Stem Cells/metabolism , Stem Cell Transplantation , Transcription Factors/metabolism , Transcription, Genetic
17.
Development ; 143(17): 3074-84, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27471257

ABSTRACT

Sall4 is an essential transcription factor for early mammalian development and is frequently overexpressed in cancer. Although it is reported to play an important role in embryonic stem cell (ESC) self-renewal, whether it is an essential pluripotency factor has been disputed. Here, we show that Sall4 is dispensable for mouse ESC pluripotency. Sall4 is an enhancer-binding protein that prevents precocious activation of the neural gene expression programme in ESCs but is not required for maintenance of the pluripotency gene regulatory network. Although a proportion of Sall4 protein physically associates with the Nucleosome Remodelling and Deacetylase (NuRD) complex, Sall4 neither recruits NuRD to chromatin nor influences transcription via NuRD; rather, free Sall4 protein regulates transcription independently of NuRD. We propose a model whereby enhancer binding by Sall4 and other pluripotency-associated transcription factors is responsible for maintaining the balance between transcriptional programmes in pluripotent cells.


Subject(s)
DNA-Binding Proteins/metabolism , Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Chromatin Immunoprecipitation , Computational Biology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Mass Spectrometry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Nucleosomes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
18.
Elife ; 52016 06 28.
Article in English | MEDLINE | ID: mdl-27350048

ABSTRACT

Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM.


Subject(s)
Cell Movement , Cell Proliferation , Ephrin-B2/metabolism , Glioblastoma/pathology , Neoplastic Stem Cells/physiology , Animals , Heterografts , Humans , Intravital Microscopy , Mice
19.
Stem Cell Reports ; 6(4): 437-446, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26947977

ABSTRACT

Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals.


Subject(s)
Blastocyst/cytology , Germ Layers/cytology , Human Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Blastocyst/metabolism , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Cell Proliferation/genetics , Cells, Cultured , DNA Methylation , Fluorescent Antibody Technique , Gene Expression Profiling/methods , Germ Layers/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
20.
Cell ; 164(4): 668-80, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26871632

ABSTRACT

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Subject(s)
Embryonic Stem Cells/cytology , Genes, myc , Proto-Oncogene Proteins c-myc/genetics , Animals , Blastocyst/metabolism , Cell Proliferation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Female , Gene Knockout Techniques , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL