Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Haematologica ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721745

ABSTRACT

Antibody-drug conjugates (ADCs) represent one of the most successful therapeutic approaches introduced in clinical practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19 targeting ADC, in which the antibody is conjugated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine (PBD) dimer warhead (SG3199). Based on the results of a phase 2 study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large B-cell lymphoma. We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, correlated its activity with CD19 expression levels, and identified combination partners providing synergy with loncastuximab tesirine. Loncastuximab tesirine was tested across 60 lymphoma cell lines. Loncastuximab tesirine had strong cytotoxic activity in B-cell lymphoma cell lines. The in vitro activity was correlated with CD19 expression level and intrinsic sensitivity of cell lines to the ADC's warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADCs (coltuximab ravtansine, huB4-DGN462), albeit the pattern of activity across cell lines was correlated. Loncastuximab tesirine activity was also largely correlated with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors. Our data support the further development of loncastuximab tesirine as a single agent and in combination for patients affected by mature B-cell neoplasms. The results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by resistance to multiple therapies.

3.
Haematologica ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385243

ABSTRACT

The IELSG38 trial was conducted to investigate the effects of subcutaneous (SC) rituximab on the complete remission (CR) rate and the benefits of SC maintenance in patients with extranodal marginal zone lymphoma (MZL) who received frontline treatment with chlorambucil plus rituximab. Study treatment comprised an induction phase with chlorambucil 6 mg/m2/day orally on weeks 1-6, 9-10, 13-14, 17-18, and 21-22, and rituximab 375 mg/m2 intravenously on day 1 of weeks 1-4, and 1400 mg SC on weeks 9, 13, 17, and 21. Then, a maintenance phase followed with rituximab administered at 1400 mg SC every two months for two years. Of the 112 patients enrolled, 109 were evaluated for efficacy. The CR rates increased from 52% at the end of the induction phase to 70% upon completion of the maintenance phase. With a median follow-up of 5.8 years, the 5-year event-free, progression-free, and overall survival rates were 87% (95% CI, 78-92), 84% (95% CI, 75-89), and 93% (95% CI, 86-96), respectively. The most common grade ≥3 toxicities were neutropenia (33%) and lymphocytopenia (16%). Six patients experienced treatment-related serious adverse events, including fever of unknown origin, sepsis, pneumonia, respiratory failure, severe cerebellar ataxia, and fatal acute myeloid leukemia. The trial showed that subcutaneous rituximab did not improve the complete remission rate at the conclusion of the induction phase, which was the main endpoint. Nevertheless, SC maintenance might have facilitated long-term disease control, potentially contributing to enhanced event-free and progression-free survival.

4.
Mol Cancer Ther ; 23(4): 520-531, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38324336

ABSTRACT

Relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) and lymphomas have poor patient outcomes; novel therapies are needed. CD22 is an attractive target for antibody-drug conjugates (ADCs), being highly expressed in R/R B-ALL with rapid internalization kinetics. ADCT-602 is a novel CD22-targeting ADC, consisting of humanized mAb hLL2-C220, site specifically conjugated to the pyrrolobenzodiazepine dimer-based payload tesirine. In preclinical studies, ADCT-602 demonstrated potent, specific cytotoxicity in CD22-positive lymphomas and leukemias. ADCT-602 was specifically bound, internalized, and trafficked to lysosomes in CD22-positive tumor cells; after cytotoxin release, DNA interstrand crosslink formation persisted for 48 hours. In the presence of CD22-positive tumor cells, ADCT-602 caused bystander killing of CD22-negative tumor cells. A single ADCT-602 dose led to potent, dose-dependent, in vivo antitumor activity in subcutaneous and disseminated human lymphoma/leukemia models. Pharmacokinetic analyses (rat and cynomolgus monkey) showed excellent stability and tolerability of ADCT-602. Cynomolgus monkey B cells were efficiently depleted from circulation after one dose. Gene signature association analysis revealed IRAK1 as a potential marker for ADCT-602 resistance. Combining ADCT-602 + pacritinib was beneficial in ADCT-602-resistant cells. Chidamide increased CD22 expression on B-cell tumor surfaces, increasing ADCT-602 activity. These data support clinical testing of ADCT-602 in R/R B-ALL (NCT03698552) and CD22-positive hematologic cancers.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Immunoconjugates , Lymphoma, B-Cell , Humans , Rats , Animals , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Macaca fascicularis , Antineoplastic Agents/therapeutic use , Lymphoma, B-Cell/drug therapy , Hematologic Neoplasms/drug therapy , Sialic Acid Binding Ig-like Lectin 2
5.
Mol Cancer Ther ; 23(3): 368-380, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38052765

ABSTRACT

BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead to long-lasting complete remission is rather limited, especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. We started from a marginal zone lymphoma cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole-exome sequencing, and pharmacologic screening, which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the antitumor activity of various BTK/PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK/PI3K inhibitors in parental cells and in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. An epigenetic reprogramming sustained the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were also shown to be expressed in clinical specimens. In conclusion, we showed that the overexpression of ERBB4 and its ligands represents a novel mechanism of resistance for lymphoma cells to bypass the antitumor activity of BTK and PI3K inhibitors and that targeted pharmacologic interventions can restore sensitivity to the small molecules.


Subject(s)
Antineoplastic Agents , Lymphoma, B-Cell , Humans , Phosphatidylinositol 3-Kinases/pharmacology , Cell Line, Tumor , Signal Transduction , Lymphoma, B-Cell/pathology , Lapatinib/pharmacology , Lapatinib/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptor, ErbB-4/pharmacology
6.
Br J Haematol ; 204(1): 191-205, 2024 01.
Article in English | MEDLINE | ID: mdl-38011941

ABSTRACT

The DNA damage response (DDR) is the cellular process of preserving an intact genome and is often deregulated in lymphoma cells. The ataxia telangiectasia and Rad3-related (ATR) kinase is a crucial factor of DDR in the response to DNA single-strand breaks. ATR inhibitors are agents that have shown considerable clinical potential in this context. We characterized the activity of the ATR inhibitor elimusertib (BAY 1895344) in a large panel of lymphoma cell lines. Furthermore, we evaluated its activity combined with the clinically approved PI3K inhibitor copanlisib in vitro and in vivo. Elimusertib exhibits potent anti-tumour activity across various lymphoma subtypes, which is associated with the expression of genes related to replication stress, cell cycle regulation and, as also sustained by CRISPR Cas9 experiments, CDKN2A loss. In several tumour models, elimusertib demonstrated widespread anti-tumour activity stronger than ceralasertib, another ATR inhibitor. This activity is present in both DDR-proficient and DDR-deficient lymphoma models. Furthermore, a combination of ATR and PI3K inhibition by treatment with elimusertib and copanlisib has in vitro and in vivo anti-tumour activity, providing a potential new treatment option for lymphoma patients.


Subject(s)
Lymphoma , Neoplasms , Humans , Phosphatidylinositol 3-Kinases/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Protein Kinase Inhibitors/therapeutic use , Neoplasms/drug therapy , Lymphoma/drug therapy , DNA Damage
7.
Hematol Oncol ; 42(1): e3237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937474

ABSTRACT

About one third of patients with diffuse large B-cell lymphoma (DLBCL) have a relapsing/refractory (R/R) disease after first line chemo-immunotherapy, with particularly poor outcomes observed in patients with primary refractory disease and early relapse. CD19 specific chimeric antigen receptor (CAR) T cell therapy is a game changer that results in durable and complete response rates in almost half of the patients with R/R DLBCL. Other emerging CD19-targeting therapies include monoclonal antibodies, bispecific antibodies and targeting antibody-drug conjugates, which also show encouraging results. However, the timing and sequencing of different anti-CD19-targeting agents and how they might interfere with subsequent CAR T cell treatment is still unclear. In this review, we summarize the results of the pivotal clinical trials as well as evidence from real-world series of the use of different CD19-targeting approved agents. We discuss the effect of various therapies on CD19 expression and its implications for treatment sequencing.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Receptors, Chimeric Antigen/therapeutic use , Neoplasm Recurrence, Local , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Antigens, CD19
8.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014209

ABSTRACT

Purpose: The transmembrane protein CD37 is expressed almost exclusively in lymphoid tissues, with the highest abundance in mature B cells. CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical and promising early clinical activity. Naratuximab emtansine (Debio 1562, IMGN529) is an antibodydrug conjugate (ADC) that incorporates an anti-CD37 monoclonal antibody conjugated to the maytansinoid DM1 as payload. Naratuximab emtansine has shown activity as a single agent and in combination with the anti-CD20 monoclonal antibody rituximab in B cell lymphoma patients. Experimental Design: We assessed the activity of naratuximab emtansine using in vitro models of lymphomas, correlated its activity with CD37 expression levels, characterized two resistance mechanisms to the ADC, and identified combination partners providing synergy. Results: The anti-tumor activity of naratuximab emtansine was tested in 54 lymphoma cell lines alongside its free payload. The median IC 50 of naratuximab emtansine was 780 pM, and the activity, primarily cytotoxic, was more potent in B than in T cell lymphoma cell lines. In the subgroup of cell lines derived from B cell lymphoma, there was some correlation between sensitivity to DM1 and sensitivity to naratuximab emtansine (r=0.28, P = 0.06). After prolonged exposure to the ADC, one diffuse large B cell lymphoma (DLBCL) cell line developed resistance to the ADC due to the biallelic loss of the CD37 gene. After CD37 loss, we also observed upregulation of IL6 (IL-6) and other transcripts from MYD88/IL6-signaling. Recombinant IL6 led to resistance to naratuximab emtansine, while the anti-IL6 antibody tocilizumab improved the cytotoxic activity of the ADC in CD37-positive cells. In a second model, resistance was sustained by an activating mutation in the PIK3CD gene, associated with increased sensitivity to PI3K δ inhibition and a switch from functional dependence on the anti-apoptotic protein MCL1 to reliance on BCL2. The addition of idelalisib or venetoclax to naratuximab emtansine overcame resistance to the ADC in the resistant derivative while also improving the cytotoxic activity of the ADC in the parental cells. Conclusions: Targeting B cell lymphoma with the CD37 targeting ADC naratuximab emtansine showed vigorous anti-tumor activity as a single agent, which was also observed in models bearing genetic lesions associated with inferior outcomes, such as MYC translocations and TP53 inactivation or resistance to R-CHOP. Resistance DLBCL models identified active combinations of naratuximab emtansine with drugs targeting IL6, PI3K δ , and BCL2. Despite notable progress in recent decades, we still face challenges in achieving a cure for a substantial number of lymphoma patients (1,2). A pertinent example is diffuse large B cell lymphoma (DLBCL), the most prevalent type of lymphoma (3). More than half of DLBCL patients can achieve remission, but around 40% of them experience refractory disease or relapse following an initial positive response (3). Regrettably, the prognosis for many of these cases remains unsatisfactory despite introducing the most recent antibody-based or cellular therapies (3,4), underscoring the importance of innovating new therapeutic strategies and gaining insights into the mechanisms of therapy resistance. CD37 is a transmembrane glycoprotein belonging to the tetraspanin family, primarily expressed on the surface of immune cells, principally in mature B cells but also, at lower levels, in T cells, macrophages/monocytes, granulocytes and dendritic cells (5) (6-8). CD37 plays a crucial role in various immune functions, including B cell activation, proliferation, and signaling, although its precise role still needs to be fully elucidated. CD37 interacts with multiple molecules, including SYK, LYN, CD19, CD22, PI3K δ , PI3K γ , and different integrins, among others (6-8). In mice, the lack of CD37 is paired with reduced T cell-dependent antibody-secreting cells and memory B cells, apparently due to the loss of CD37-mediated clustering of α 4 ß 1 integrins (VLA-4) on germinal center B cells and decreased downstream activation of PI3K/AKT signaling and cell survival (5). Reflecting the expression pattern observed in normal lymphocytes, CD37 exhibits elevated expression in all mature B-cell lymphoid neoplasms, including most lymphoma subtypes, and absence in early progenitor cells or terminally differentiated plasma cells (6,8-14). In DLBCL, CD37 expression has been reported between 40% and 90% of cases across multiple studies performed using different antibodies (10,14-16). CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical (7,10-14,17-23) and early promising clinical activity (24-32). Among the CD37-targeting agents, naratuximab emtansine (Debio 1562, IMGN529) is an antibody-drug conjugate (ADC) that incorporates the anti-CD37 humanized IgG1 monoclonal antibody K7153A conjugated to the maytansinoid DM1, as payload, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) (10). Based on the initial in vitro and in vivo evidence of anti-tumor activity in lymphoma and chronic lymphocytic leukemia (CLL) (7,10), naratuximab emtansine entered the clinical evaluation as a single agent. The phase 1 study exploring naratuximab emtansine enrolled 39 patients with relapsed/refractory B cell lymphoma (27). The overall response rate (ORR) was 13% across all patients and 22% in DLBCL patients, including the only observed complete remission (CR) (27). In preliminary results of a phase 2 trial exploring the combination of naratuximab emtansine with the anti-CD20 monoclonal antibody rituximab (18), based on positive preclinical data (18), the ORR was 45% in 76 patients with DLBCL with 24 CRs (32%), 57% in 14 patients with follicular lymphoma (five CR), 50% in four MCL patients (2 CR) (31). Here, we studied the pattern of activity of naratuximab emtansine across a large panel of cell lines derived from DLBCL and other lymphoma subtypes and characterized two resistance mechanisms to the ADC.

9.
Br J Haematol ; 203(2): 244-254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584198

ABSTRACT

The transcriptional factor ETS1 is upregulated in 25% of diffuse large B cell lymphoma (DLBCL). Here, we studied the role of ETS1 phosphorylation at threonine 38, a marker for ETS1 activation, in DLBCL cellular models and clinical specimens. p-ETS1 was detected in activated B cell-like DLBCL (ABC), not in germinal centre B-cell-like DLBCL (GCB) cell lines and, accordingly, it was more common in ABC than GCB DLBCL diagnostic biopsies. MEK inhibition decreased both baseline and IgM stimulation-induced p-ETS1 levels. Genetic inhibition of phosphorylation of ETS1 at threonine 38 affected the growth and the BCR-mediated transcriptome program in DLBCL cell lines. Our data demonstrate that ETS1 phosphorylation at threonine 38 is important for the growth of DLBCL cells and its pharmacological inhibition could benefit lymphoma patients.

10.
Am J Cancer Res ; 13(5): 2076-2086, 2023.
Article in English | MEDLINE | ID: mdl-37293172

ABSTRACT

Microtubules are major components of the cellular cytoskeleton, ubiquitously founded in all eukaryotic cells. They are involved in mitosis, cell motility, intracellular protein and organelle transport, and maintenance of cytoskeletal shape. Avanbulin (BAL27862) is a microtubule-targeted agent (MTA) that promotes tumor cell death by destabilization of microtubules. Due to its unique binding to the colchicine site of tubulin, differently from other MTAs, avanbulin has previously shown activity in solid tumor cell lines. Its prodrug, lisavanbulin (BAL101553), has shown early signs of clinical activity, especially in tumors with high EB1 expression. Here, we assessed the preclinical anti-tumor activity of avanbulin in diffuse large B cell lymphoma (DLBCL) and the pattern of expression of EB1 in DLBCL cell lines and clinical specimens. Avanbulin showed a potent in vitro anti-lymphoma activity, which was mainly cytotoxic with potent and rapid apoptosis induction. Median IC50 was around 10 nM in both ABC and GCB-DLBCL. Half of the cell lines tested showed an induction of apoptosis already in the first 24 h of treatment, the other half in the first 48 h. EB1 showed expression in DLBCL clinical specimens, opening the possibility for a cohort of patients that could potentially benefit from treatment with lisavanbulin. These data show the basis for further preclinical and clinical evaluation of lisavanbulin in the lymphoma field.

11.
Hematol Oncol ; 41 Suppl 1: 88-91, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37294969

ABSTRACT

The three main types of marginal zone lymphoma (MZL), recognized by the current lymphoma classifications are the extranodal MZL of mucosa-associated lymphoid tissue, the splenic MZL, and the nodal MZL. They share some karyotype lesions (trisomies of chromosomes 3 and 18, deletions at 6q23), and alterations of the nuclear factor kappa B (NFkB) pathway are also common in all of them. However, they differ in the presence of recurrent translocations, mutations affecting the Notch signaling pathway (NOTCH2 and less commonly NOTCH1), the transcription factors Kruppel-like factor 2 (KLF2) or the receptor-type protein tyrosine phosphatase delta (PTPRD). This review summarizes the most recent and significant advances in our understanding of the epidemiology, genetics, and biology of MZLs and outlines the current principles of the standard management of MZL at different anatomic sites.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, B-Cell, Marginal Zone , Humans , Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/therapy , Transcription Factors/genetics , Translocation, Genetic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Gene Rearrangement
12.
Eur J Med Chem ; 254: 115372, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37068384

ABSTRACT

Unsatisfactory outcomes for relapsed/refractory lymphoma patients prompt continuing efforts to develop new therapeutic strategies. Our previous studies on pyrrole-based anti-lymphoma agents led us to synthesize a new series of twenty-six pyrrolo[3',4':3,4]cyclohepta[1,2-d] [1,2]oxazole derivatives and study their antiproliferative effects against a panel of four non-Hodgkin lymphoma cell lines. Several candidates showed significant anti-proliferative effects, with IC50's reaching the sub-micromolar range in at least one cell line, with compound 3z demonstrating sub-micromolar growth inhibitory effects towards the entire panel. The VL51 cell line was the most sensitive, with an IC50 value of 0.10 µM for 3z. Our earlier studies had shown that tubulin was a prominent target of many of our oxazole derivatives. We therefore examined their effects on tubulin assembly and colchicine binding. While 3u and 3z did not appear to target tubulin, good activity was observed with 3d and 3p. Molecular docking and molecular dynamics simulations allowed us to rationalize the binding mode of the synthesized compounds toward tubulin. All ligands exhibited a better affinity for the colchicine site, confirming their specificity for this binding pocket. In particular, a better affinity and free energy of binding was observed for 3d and 3p. This result was confirmed by experimental data, indicating that, although both 3d and 3p significantly affected tubulin assembly, only 3d showed activity comparable to that of combretastatin A-4, while 3p was about 4-fold less active. Cell cycle analysis showed that compounds 3u and especially 3z induced a block in G2/M, a strong decrease in S phase even at low compound concentrations and apoptosis through the mitochondrial pathway. Thus, the mechanism of action of 3u and 3z remains to be elucidated. Very high selectivity toward cancer cells and low toxicity in human peripheral blood lymphocytes were observed, highlighting the good potential of these agents in cancer therapy and encouraging further exploration of this compound class to obtain new small molecules as effective lymphoma treatments.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , Tubulin/metabolism , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Oxazoles/pharmacology , Oxazoles/chemistry , Cell Proliferation , Tubulin Modulators/pharmacology , Colchicine/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Structure-Activity Relationship
13.
Cancer Res Commun ; 3(4): 576-591, 2023 04.
Article in English | MEDLINE | ID: mdl-37066023

ABSTRACT

PI3K delta (PI3Kδ) inhibitors are used to treat lymphomas but safety concerns and limited target selectivity curbed their clinical usefulness. PI3Kδ inhibition in solid tumors has recently emerged as a potential novel anticancer therapy through the modulation of T-cell responses and direct antitumor activity. Here we report the exploration of IOA-244/MSC2360844, a first-in-class non-ATP-competitive PI3Kδ inhibitor, for the treatment of solid tumors. We confirm IOA-244's selectivity as tested against a large set of kinases, enzymes, and receptors. IOA-244 inhibits the in vitro growth of lymphoma cells and its activity correlates with the expression levels of PIK3CD, suggesting cancer cell-intrinsic effects of IOA-244. Importantly, IOA-244 inhibits regulatory T cell proliferation while having limited antiproliferative effects on conventional CD4+ T cells and no effect on CD8+ T cells. Instead, treatment of CD8 T cells with IOA-244 during activation, favors the differentiation of memory-like, long-lived CD8, known to have increased antitumor capacity. These data highlight immune-modulatory properties that can be exploited in solid tumors. In CT26 colorectal and Lewis lung carcinoma lung cancer models, IOA-244 sensitized the tumors to anti-PD-1 (programmed cell death protein 1) treatment, with similar activity in the Pan-02 pancreatic and A20 lymphoma syngeneic mouse models. IOA-244 reshaped the balance of tumor-infiltrating cells, favoring infiltration of CD8 and natural killer cells, while decreasing suppressive immune cells. IOA-244 presented no detectable safety concerns in animal studies and is currently in clinical phase Ib/II investigation in solid and hematologic tumors. Significance: IOA-244 is a first-in-class non-ATP-competitive, PI3Kδ inhibitor with direct antitumor in vitro activity correlated with PI3Kδ expression. The ability to modulate T cells, in vivo antitumor activity in various models with limited toxicity in animal studies provides the rationale for the ongoing trials in patients with solid tumors and hematologic cancers.


Subject(s)
Lymphoma , Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes , Phosphatidylinositol 3-Kinases , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Lymphoma/drug therapy , Immune Tolerance
14.
Life Sci Alliance ; 6(7)2023 07.
Article in English | MEDLINE | ID: mdl-37105715

ABSTRACT

MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Animals , Humans , Mice , Cytokines/metabolism , Gene Expression Regulation , Interleukin-15/genetics , Interleukin-15/metabolism , Signal Transduction
15.
Vet Pathol ; 60(3): 308-315, 2023 05.
Article in English | MEDLINE | ID: mdl-36951124

ABSTRACT

Canine diffuse large B-cell lymphoma (cDLBCL) is characterized by high mortality and clinical heterogeneity. Although chemo-immunotherapy improves outcome, treatment response remains mainly unpredictable. To identify a set of immune-related genes aberrantly regulated and impacting the prognosis, we explored the immune landscape of cDLBCL by NanoString. The immune gene expression profile of 48 fully clinically characterized cDLBCLs treated with chemo-immunotherapy was analyzed with the NanoString nCounter Canine IO Panel using RNA extracted from tumor tissue paraffin blocks. A Cox proportional-hazards model was used to design a prognostic gene signature. The Cox model identified a 6-gene signature (IL2RB, BCL6, TXK, C2, CDKN2B, ITK) strongly associated with lymphoma-specific survival, from which a risk score was calculated. Dogs were assigned to high-risk or low-risk groups according to the median score. Thirty-nine genes were differentially expressed between the 2 groups. Gene set analysis highlighted an upregulation of genes involved in complement activation, cytotoxicity, and antigen processing in low-risk dogs compared with high-risk dogs, whereas genes associated with cell cycle were downregulated in dogs with a lower risk. In line with these results, cell type profiling suggested the abundance of natural killer and CD8+ cells in low-risk dogs compared with high-risk dogs. Furthermore, the prognostic power of the risk score was validated in an independent cohort of cDLBCL. In conclusion, the 6-gene-derived risk score represents a robust biomarker in predicting the prognosis in cDLBCL. Moreover, our results suggest that enhanced tumor antigen recognition and cytotoxic activity are crucial in achieving a more effective response to chemo-immunotherapy.


Subject(s)
Dog Diseases , Lymphoma, Large B-Cell, Diffuse , Dogs , Animals , Lymphoma, Large B-Cell, Diffuse/veterinary , Prognosis , Biomarkers , Transcriptome , Dog Diseases/pathology
16.
Eur J Med Chem ; 248: 115038, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36634458

ABSTRACT

Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.


Subject(s)
Neoplasms , TOR Serine-Threonine Kinases , Rats , Animals , Male , Humans , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1 , Morpholines/pharmacology , Morpholines/chemistry , Sirolimus/pharmacology , Sirolimus/therapeutic use , Neoplasms/drug therapy , Pyrans/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
17.
Biosens Bioelectron X ; 13: 100302, 2023 May.
Article in English | MEDLINE | ID: mdl-36589921

ABSTRACT

The emergence of the coronavirus 2019 (COVID-19) arose the need for rapid, accurate and massive virus detection methods to control the spread of infectious diseases. In this work, a device, deployable in non-medical environments, has been developed for the detection of non-amplified SARS-CoV-2 RNA. A SARS-CoV-2 specific probe was designed and covalently immobilized at the surface of glass slides to fabricate a DNA biosensor. The resulting system was integrated in a microfluidic platform, in which viral RNA was extracted from non-treated human saliva, before hybridizing at the surface of the sensor. The formed DNA/RNA duplex was detected in presence of SYBR Green I using an opto-electronic system, based on a high-power LED and a photo multiplier tube, which convert the emitted fluorescence into an electrical signal that can be processed in less than 10 min. The limit of detection of the resulting microfluidic platform reached six copies of viral RNA per microliter of sample (equal to 10 aM) and satisfied the safety margin. The absence of non-specific adsorption and the selectivity for SARS-CoV-2 RNA were established. In addition, the designed device could be applicable for the detection of a variety of viruses by simple modification of the immobilized probe.

18.
J Clin Med ; 12(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36675328

ABSTRACT

Inhibitors of phosphatidylinositol 3-kinase (PI3K) and Bruton tyrosine kinase (BTK) represent a recognized option for the treatment of patients affected by indolent B cell lymphomas. However, small molecules as single agents show limited success in their ability in inducing complete responses, with only partial remission achieved in most patients, suggesting the need for combination therapies. IRAK4 is a protein kinase downstream of the Toll-like receptor signaling (TLR), a driver pathway of secondary tumor° resistance in both hematological and solid tumor malignancies. Activation of IRAK4 upon TLRs and IL-1 receptor (IL-1R) stimulation and through the adaptor protein MYD88 initiates a signaling cascade that induces cytokine and survival factor expression mediated by the transcription factor NF-κB. MYD88-L265P encoding mutations occur in diffuse large B-cell lymphomas, in lymphoplasmacytic lymphomas and in few marginal zone lymphomas (MZL). The IRAK4 inhibitor emavusertib (CA-4948) has shown early safety and clinical activity in lymphoma and leukemia patients. In this preclinical study, we assessed emavusertib effectiveness in MZL, both as single agent and in combination with targeted agents, with a particular focus on its capability to overcome resistance to BTK and PI3K inhibitors. We showed that the presence of MYD88 L265P mutation in bona fide MZL cell lines confers sensitivity to the IRAK4 inhibitor emavusertib as single agent. Emavusertib-based combinations improved the sensitivity of MZL cells to BTK and PI3K inhibitors, including cells with a secondary resistance to these agents. Emavusertib exerted its activity via inhibition of NF-κB signaling and induction of apoptosis. Considering the early safety data from clinical trials, our study identifies the IRAK4 inhibitor emavusertib as a novel compound to be explored in trials for patients with MYD88-mutated indolent B cell lymphomas as single agent and as combination partner with BTK or PI3K inhibitors in unselected populations of patients.

19.
bioRxiv ; 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36711490

ABSTRACT

BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead as single agents to long-lasting complete remission is rather limited especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. Here, we show that the overexpression of ERBB4 and its ligands represents a modality for B cell neoplastic cells to bypass the anti-tumor activity of BTK and PI3K inhibitors and that targeted pharmacological interventions can restore sensitivity to the small molecules. We started from a marginal zone lymphoma (MZL) cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole exome sequencing, and pharmacological screening which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the anti-tumor activity of various BTK and PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK and PI3K inhibitors in parental cells but also in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. Multi-omics analysis underlined that an epigenetic reprogramming affected the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were shown to be expressed in clinical samples, further extending the findings of the study. In conclusions, we identified a novel ERBB4-driven mechanism of resistance to BTK and PI3K inhibitors and treatments that appear to overcome it. Key points: A mechanism of secondary resistance to the PI3Kδ and BTK inhibitors in B cell neoplasms driven by secreted factors.Resistance can be reverted by targeting ERBB signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...