Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Chempluschem ; : e202400195, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666666

ABSTRACT

Silicon (Si) and silicon/graphite (Si/Gr) composite anodes are promising candidates due to their high theoretical capacity, low operating potential and natural abundance for high energy density Li-ion batteries. Green electrode production, eliminating organic volatile solvents require advancement of aqueous electrodes. Engineering the binder plays a critical role for improving waterborne electrodes. Lithium substituted polyacrylic acid LiPAA has been demonstrated as a promising binder for Si/Gr anodes and for Ni-rich cathodes in different cell configurations. LiPAA is utilized to minimize the volume expansion during cycling for Si/Gr anodes. LiPAA is formed in situ during cathode slurry preparation to regulate the pH and dimmish the Li loss. Using advanced characterization techniques, we investigated the slurries, electrodes, and active material reaction with LiPAA and its effect to the cycling performance. Our results indicate that the performance of high Si containing anode is limited by the amount of Si in the electrode. The failure mechanism with respect to high Si content was studied thoroughly. Aqueous processed cathodes with LiPAA binder in combination with Si anodes outperformed NMP based cathodes. Hence, LiPAA was successfully utilized as an active binder for both a high Si containing anode and for a Ni rich cathode.

2.
Small Methods ; 7(11): e2300647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37649220

ABSTRACT

The crystal site occupancy of different divalent ions and the induction of lattice defects represent an additional tool for modifying the intrinsic magnetic properties of spinel ferrites nanoparticles. Here, the relevance of the lattice defects is demonstrated in the appearance of exchange-bias and in the improvement of the magnetic properties of doped ferrites of 20 nm, obtained from the mild oxidation of core@shell (wüstite@ferrite) nanoparticles. Three types of nanoparticles (Fe0.95 O@Fe3 O4 , Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4 and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) are oxidized. As a result, the core@shell morphology is removed and transformed in a spinel-like nanoparticle, through a topotactic transformation. This study shows that most of the induced defects in these nanoparticles and their magnetic properties are driven by the inability of the Co(II) ions at the octahedral sites to migrate to tetrahedral sites, at the chosen mild oxidation temperature. In addition, the appearance of crystal defects and antiphase boundaries improves the magnetic properties of the starting compounds and leads to the appearance of exchange bias at room temperature. These results highlight the validity of the proposed method to impose novel magnetic characteristics in the technologically relevant class of nanomaterials such as spinel ferrites, expanding their potential exploitation in several application fields.

3.
Front Microbiol ; 14: 1191166, 2023.
Article in English | MEDLINE | ID: mdl-37455713

ABSTRACT

Hundreds of different species of small RNAs can populate a bacterial cell. This small transcriptome contains important information for the adaptation of cellular physiology to environmental changes. Underlying cellular networks involving small RNAs are RNA-RNA and RNA-protein interactions, which are often intertwined. In addition, small RNAs can function as mRNAs. In general, small RNAs are referred to as noncoding because very few are known to contain translated open reading frames. In this article, we intend to highlight that the number of small RNAs that fall within the set of translated RNAs is bound to increase. In addition, we aim to emphasize that the dynamics of the small transcriptome involve different functional codes, not just the genetic code. Therefore, since the role of small RNAs is always code-driven, we believe that there is little reason to continue calling them small noncoding RNAs.

4.
Microbiol Spectr ; 11(1): e0408322, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625583

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve clinical outcomes with varied efficacies in patients with CF. However, the mutual effects of CFTR modulators and bacterial adaptation, together with antibiotic regimens, can influence clinical outcomes. We evaluated the effects of ivacaftor (IVA), lumacaftor (LUM), tezacaftor, elexacaftor, and a three-modulator combination of elexacaftor, tezacaftor, and ivacaftor (ETI), alone or combined with antibiotics, on sequential CF isolates. IVA and ETI showed direct antimicrobial activities against Staphylococcus aureus but not against Pseudomonas aeruginosa. Additive effects or synergies were observed between the CFTR modulators and antibiotics against both species, independently of adaptation to the CF lung. IVA and LUM were the most effective in potentiating antibiotic activity against S. aureus, while IVA and ETI enhanced mainly polymyxin activity against P. aeruginosa. Next, we evaluated the effect of P. aeruginosa pneumonia on the pharmacokinetics of IVA in mice. IVA and its metabolites in plasma, lung, and epithelial lining fluid were increased by P. aeruginosa infection. Thus, CFTR modulators can have direct antimicrobial properties and/or enhance antibiotic activity against initial and adapted S. aureus and P. aeruginosa isolates. Furthermore, bacterial infection impacts airway exposure to IVA, potentially affecting its efficacy. Our findings suggest optimizing host- and pathogen-directed therapies to improve efficacy for personalized treatment. IMPORTANCE CFTR modulators have been developed to correct and/or enhance CFTR activity in patients with specific cystic fibrosis (CF) genotypes. However, it is of great importance to identify potential off-targets of these novel therapies to understand how they affect lung physiology in CF. Since bacterial infections are one of the hallmarks of CF lung disease, the effects (if any) of CFTR modulators on bacteria could impact their efficacy. This work highlights a mutual interaction between CFTR modulators and opportunistic bacterial infections; in particular, it shows that (i) CFTR modulators have an antibacterial activity per se and influence antibiotic efficacy, and (ii) bacterial airway infections affect levels of CFTR modulators in the airways. These findings may help optimize host- and pathogen-directed drug regimens to improve the efficacy of personalized treatment.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Animals , Mice , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation
5.
mBio ; 14(1): e0241822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36475775

ABSTRACT

Behind the pathogenic lifestyle of Pseudomonas aeruginosa exists a complex regulatory network of intertwined switches at both the transcriptional and posttranscriptional levels. Major players that mediate translation regulation of several genes involved in host-P. aeruginosa interaction are small RNAs (sRNAs) and the Hfq protein. The canonical role of Hfq in sRNA-driven regulation is to act as a matchmaker between sRNAs and target mRNAs. Besides, the sRNA CrcZ is known to sequester Hfq and abrogate its function of translation repression of target mRNAs. In this study, we describe the novel sRNA GssA in the strain PA14 and its multifaceted interplay with Hfq. We show that GssA is multiresponsive to environmental and physiological signals and acts as an apical repressor of key bacterial functions in the human host such as the production of pyocyanin, utilization of glucose, and secretion of exotoxin A. We suggest that the main role of Hfq is not to directly assist GssA in its regulatory role but to repress GssA expression. In the case of pyocyanin production, we suggest that Hfq interplays with GssA also by converging a positive effect on this pathway. Furthermore, our results indicate that both Hfq and GssA play a positive role in anaerobic growth, possibly by regulating the respiratory chain. On the other hand, we show that GssA can modulate not only Hfq expression at both transcriptional and posttranscriptional levels but also that of CrcZ, thus potentially influencing the pleiotropic role of Hfq. IMPORTANCE The pathogenic lifestyle of the bacterium Pseudomonas aeruginosa, a leading cause of life-threatening infections in the airways of cystic fibrosis patients, is based on the fine regulation of virulence-associated factors. Regulatory small RNAs (sRNAs) and the RNA-binding protein Hfq are recognized key components within the P. aeruginosa regulatory networks involved in host-pathogen interaction. In this study, we characterized in the highly virulent P. aeruginosa strain PA14 the novel sRNA GssA. We found that it can establish a many-sided reciprocal interplay with Hfq which goes beyond the canonical mechanism of direct physical interaction that had previously been characterized for other sRNAs. Given that the Hfq-driven regulatory network of virulence factors is very broad and important for the progression of infection, we consider GssA as a new RNA target that can potentially be used to develop new antibacterial drugs.


Subject(s)
Pseudomonas aeruginosa , RNA, Small Untranslated , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Pyocyanine , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Messenger/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism
6.
Ultramicroscopy ; 245: 113663, 2023 03.
Article in English | MEDLINE | ID: mdl-36566529

ABSTRACT

The key to optimizing spatial resolution in a state-of-the-art scanning transmission electron microscope is the ability to measure and correct for electron optical aberrations of the probe-forming lenses precisely. Several diagnostic methods for aberration measurement and correction have been proposed, albeit often at the cost of relatively long acquisition times. Here, we illustrate how artificial intelligence can be used to provide near-real-time diagnosis of aberrations from individual Ronchigrams. The demonstrated speed of aberration measurement is important because microscope conditions can change rapidly. It is also important for the operation of MEMS-based hardware correction elements, which have less intrinsic stability than conventional electromagnetic lenses.


Subject(s)
Electrons , Lenses , Microscopy, Electron, Scanning Transmission/methods , Artificial Intelligence , Neural Networks, Computer
7.
Front Chem ; 10: 1038796, 2022.
Article in English | MEDLINE | ID: mdl-36583150

ABSTRACT

Protein-mimetic peptides (PMPs) are shorter sequences of self-assembling proteins, that represent remarkable building blocks for the generation of bioinspired functional supramolecular structures with multiple applications. The identification of novel aminoacidic sequences that permit the access to valuable biocompatible materials is an attractive area of research. In this work, in silico analysis of the Pseudomonas aeruginosa YeaZ protein (PaYeaZ) led to the identification of a tetradecapeptide that represents the shortest sequence responsible for the YeaZ-YeaZ dimer formation. Based on its sequence, an innovative 20-meric peptide, called PMP-2, was designed, synthesized, and characterized in terms of secondary structure and self-assembly properties. PMP-2 conserves a helical character and self-assembles into helical nanofibers in non-polar solvents (DMSO and trifluoroethanol), as well as in dilute (0.5 mM) aqueous solutions. In contrast, at higher concentrations (>2 mM) in water, a conformational transition from α-helix to ß-sheet occurs, which is accompanied by the Protein-mimetic peptide aggregation into 2D-sheets and formation supramolecular gel in aqueous environment. Our findings reveal a newly identified Protein-mimetic peptide that could turn as a promising candidate for future material applications.

8.
ACS Appl Nano Mater ; 5(10): 14871-14881, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36338325

ABSTRACT

In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization. As a consequence, the energy product and the magnetic energy storage capability, key features for applications as permanent magnets and magnetic hyperthermia, can be increased by ca. 70%. A deep structural, morphological, chemical, and magnetic characterization reveals that the mechanism governing the coercive field improvement is the reduction of the concomitant internal stresses induced by the low-temperature annealing postsynthesis treatment. Furthermore, we show that the medium where the mild annealing process occurs is essential to control the final properties of the nanoparticles because the classical annealing procedure (T > 350 °C) performed on a dried powder does not allow the release of the lattice stress, leading to the reduction of the initial coercive field. The strategy here proposed, therefore, constitutes a method to improve the magnetic properties of nanoparticles, which can be particularly appealing for those materials, as is the case of cobalt ferrite, currently investigated as building blocks for the development of rare-earth free permanent magnets.

9.
Small ; 18(16): e2107426, 2022 04.
Article in English | MEDLINE | ID: mdl-35274450

ABSTRACT

Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe(II)  with Co(II)  and Ni(II)  on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4  and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II)  and Ni(II)  ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.


Subject(s)
Magnets , Nanoparticles , Ferric Compounds , Ferrous Compounds , Nanoparticles/chemistry , Particle Size , Temperature
10.
J Am Chem Soc ; 144(8): 3442-3448, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35171584

ABSTRACT

Recently, the formation of the ceramic-ionic liquid composite has attracted huge interest in the scientific community. In this work, we investigated the chemical reactions occurring between NASICON LAGP ceramic electrolyte and ionic liquid pyr13TFSI. This study allowed us to identify the cation exchange reaction pyr13-Li occurring on the LAGP surface, forming a LiTFSI salt that was detected by the nuclear magnetic resonance analysis. In addition, using 6Li foils, we succeeded in demonstrating that both LAGP and LiTFSI:pyr13TFSI participate in the diffusion of Li ions by the formation of an ionic bridge between two species.


Subject(s)
Ionic Liquids , Cations , Electrolytes , Lithium
11.
Front Microbiol ; 12: 691608, 2021.
Article in English | MEDLINE | ID: mdl-34759894

ABSTRACT

Pseudomonas aeruginosa is one of the most critical opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. In previous work, we indicated that the small RNA ErsA plays a role in the regulatory network of P. aeruginosa pathogenicity in airways infection. To give further insight into the lifestyle functions that could be either directly or indirectly regulated by ErsA during infection, we reanalyzed the categories of genes whose transcription appeared dysregulated in an ersA knock-out mutant of the P. aeruginosa PAO1 reference strain. This preliminary analysis indicated ErsA as a candidate co-modulator of denitrification and in general, the anaerobiosis response, a characteristic physiologic state of P. aeruginosa during chronic infection of the lung of cystic fibrosis (CF) patients. To explain the pattern of dysregulation of the anaerobic-lifestyle genes in the lack of ErsA, we postulated that ErsA regulation could target the expression of Anr, a well-known transcription factor that modulates a broad regulon of anoxia-responsive genes, and also Dnr, required for the transcription activation of the denitrification machinery. Our results show that ErsA positively regulates Anr expression at the post-transcriptional level while no direct ErsA-mediated regulatory effect on Dnr was observed. However, Dnr is transcriptionally downregulated in the absence of ErsA and this is consistent with the well-characterized regulatory link between Anr and Dnr. Anr regulatory function is critical for P. aeruginosa anaerobic growth, both through denitrification and fermentation of arginine. Interestingly, we found that, differently from the laboratory strain PAO1, ErsA deletion strongly impairs the anaerobic growth by both denitrification and arginine fermentation of the RP73 clinical isolate, a multi-drug resistant P. aeruginosa CF-adapted strain. This suggests that P. aeruginosa adaptation to CF lung might result in a higher dependence on ErsA for the transduction of the multiple signals to the regulatory network of key functions for survivance in such a complex environment. Together, our results suggest that ErsA takes an upper place in the regulatory network of airways infection, transducing host inputs to biofilm-related factors, as underlined in our previous reports, and to functions that allow P. aeruginosa to thrive in low-oxygen conditions.

12.
Materials (Basel) ; 14(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34639901

ABSTRACT

Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO2 substrate, which constitutes the mesoscopic front electrode of a monolithic perovskite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas aggregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of structural and morphological properties while thermal stability and endurance against air-induced oxidation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms of device power conversion efficiencies (up to 17.8%).

13.
Cells ; 9(11)2020 11 05.
Article in English | MEDLINE | ID: mdl-33167383

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and be involved in the interaction with host cells. Thus, studies contributing to elucidating these key molecular elements are of great importance to find alternative therapeutics. METHODS: Proteins and peptides were extracted by different methods and analyzed by Multidimensional Protein Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1 software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of experimental identified peptides and proteins. RESULTS: The combination of 29 MudPIT runs allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application of extraction methods enriching specific protein domains, about 15% of total identified peptides were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus, they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells were predicted. CONCLUSION: The present study represents one of the widest characterizations of the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates the investigation of other bacterial species whose envelope exposed protein domains are still unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in vaccine development.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Antigens, Bacterial/immunology , Models, Biological , Peptides/metabolism , Proteome/metabolism
14.
Nanoscale Horiz ; 5(12): 1610-1617, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33140817

ABSTRACT

Inorganic lead halide perovskites are promising candidates for optoelectronic applications, due to their high photoluminescence quantum yield and narrow emission line widths. Particularly attractive is the possibility to vary the bandgap as a function of the halide composition and the size or shape of the crystals at the nanoscale. Here we present an aberration-corrected scanning transmission electron microscopy (STEM) and monochromated electron energy-loss spectroscopy (EELS) study of extended nanosheets of CsPbBr3. We demonstrate their orthorhombic crystal structure and their lateral termination with Cs-Br planes. The bandgaps are measured from individual nanosheets, avoiding the effect of the size distribution which is present in standard optical spectroscopy techniques. We find an increase of the bandgap starting at thicknesses below 10 nm, confirming the less marked effect of 1D confinement in nanosheets compared to the 3D confinement observed in quantum dots, as predicted by density functional theory calculations and optical spectroscopy data from ensemble measurements.

15.
mSphere ; 5(5)2020 10 14.
Article in English | MEDLINE | ID: mdl-33055260

ABSTRACT

Bacterial small RNAs play a remarkable role in the regulation of functions involved in host-pathogen interaction. ErsA is a small RNA of Pseudomonas aeruginosa that contributes to the regulation of bacterial virulence traits such as biofilm formation and motility. Shown to take part in a regulatory circuit under the control of the envelope stress response sigma factor σ22, ErsA targets posttranscriptionally the key virulence-associated gene algC Moreover, ErsA contributes to biofilm development and motility through the posttranscriptional modulation of the transcription factor AmrZ. Intending to evaluate the regulatory relevance of ErsA in the pathogenesis of respiratory infections, we analyzed the impact of ErsA-mediated regulation on the virulence potential of P. aeruginosa and the stimulation of the inflammatory response during the infection of bronchial epithelial cells and a murine model. Furthermore, we assessed ErsA expression in a collection of P. aeruginosa clinical pulmonary isolates and investigated the link of ErsA with acquired antibiotic resistance by generating an ersA gene deletion mutant in a multidrug-resistant P. aeruginosa strain which has long been adapted in the airways of a cystic fibrosis (CF) patient. Our results show that the ErsA-mediated regulation is relevant for the P. aeruginosa pathogenicity during acute infection and contributes to the stimulation of the host inflammatory response. Besides, ErsA was able to be subjected to selective pressure for P. aeruginosa pathoadaptation and acquirement of resistance to antibiotics commonly used in clinical practice during chronic CF infections. Our findings establish the role of ErsA as an important regulatory element in the host-pathogen interaction.IMPORTANCEPseudomonas aeruginosa is one of the most critical multidrug-resistant opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. Thorough knowledge of the regulatory mechanisms involved in the establishment and persistence of the airways infections by P. aeruginosa remains elusive. Emerging candidates as molecular regulators of pathogenesis in P. aeruginosa are small RNAs, which act posttranscriptionally as signal transducers of host cues. Known for being involved in the regulation of biofilm formation and responsive to envelope stress response, we show that the small RNA ErsA can play regulatory roles in acute infection, stimulation of host inflammatory response, and mechanisms of acquirement of antibiotic resistance and adaptation during the chronic lung infections of cystic fibrosis patients. Elucidating the complexity of the networks regulating host-pathogen interactions is crucial to identify novel targets for future therapeutic applications.


Subject(s)
Host-Pathogen Interactions/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , RNA, Bacterial/genetics , Animals , Biofilms/growth & development , Cell Line, Transformed , Cystic Fibrosis/microbiology , Epithelial Cells/microbiology , Gene Expression Regulation, Bacterial , Humans , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Respiratory Tract Infections/microbiology , Virulence , Virulence Factors/genetics
16.
ACS Synth Biol ; 9(9): 2477-2492, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32786355

ABSTRACT

Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.


Subject(s)
Gene Editing/methods , Pseudomonas putida/genetics , Bacterial Adhesion , Biofilms/growth & development , Genome, Bacterial/genetics , Hydrophobic and Hydrophilic Interactions , Pseudomonas putida/physiology , Surface Properties
17.
Nanoscale ; 12(26): 14076-14086, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32583829

ABSTRACT

The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m-3 by tuning the Co content in the metal precursor.

18.
J Chem Phys ; 152(11): 114704, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32199417

ABSTRACT

Wide bandgap oxides can be sensitized to visible light by coupling them with plasmonic nanoparticles (NPs). We investigate the optical and electronic properties of composite materials made of Ag NPs embedded within cerium oxide layers of different thickness. The electronic properties of the materials are investigated by x-ray and ultraviolet photoemission spectroscopy, which demonstrates the occurrence of static charge transfers between the metal and the oxide and its dependence on the NP size. Ultraviolet-visible spectrophotometry measurements show that the materials have a strong absorption in the visible range induced by the excitation of localized surface plasmon resonances. The plasmonic absorption band can be modified in shape and intensity by changing the NP aspect ratio and density and the thickness of the cerium oxide film.

19.
Nanoscale ; 11(21): 10282-10291, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31099368

ABSTRACT

The coupling with plasmonic metal nanoparticles (NPs) represents a promising opportunity to sensitize wide band gap oxides to visible light. The processes which come into play after the excitation of localized surface plasmon resonances (LSPRs) in the NPs largely determine the efficiency of the charge/energy transfer from the metal NP to the oxide. We report a study of plasmon-mediated energy transfer from mass-selected silver NPs into the cerium oxide matrix in which they are embedded. Femtosecond transient absorption spectroscopy is used to probe the dynamics of charge carrier relaxation after the excitation of the LSPR of the silver nanoparticles and to evaluate the plasmon-mediated electron transfer efficiency from the silver nanoparticles to the cerium oxide. High injection efficiencies in the 6-16% range have been identified for excitation between 400 and 600 nm. These high values have been explained in terms of plasmon-mediated direct electron injection as well as indirect hot electron injection from the NPs to the oxide. The information obtained provides an important contribution towards a knowledge-driven design of efficient cerium oxide based nanostructured materials for solar to chemical energy conversion.

20.
Nanomaterials (Basel) ; 9(2)2019 Feb 17.
Article in English | MEDLINE | ID: mdl-30781545

ABSTRACT

Structural and functional properties of polymer composites based on carbon nanomaterials are so attractive that they have become a big challenge in chemical sensors investigation. In the present study, a thin nanofibrous layer, comprising two insulating polymers (polystyrene (PS) and polyhydroxibutyrate (PHB)), a known percentage of nanofillers of mesoporous graphitized carbon (MGC) and a free-base tetraphenylporphyrin, was deposited onto an Interdigitated Electrode (IDE) by electrospinning technology. The potentials of the working temperature to drive both the sensitivity and the selectivity of the chemical sensor were studied and described. The effects of the porphyrin combination with the composite graphene⁻polymer system appeared evident when nanofibrous layers, with and without porphyrin, were compared for their morphology and electrical and sensing parameters. Porphyrin fibers appeared smoother and thinner and were more resistive at lower temperature, but became much more conductive when temperature increased to 60⁻70 °C. Both adsorption and diffusion of chemicals seemed ruled by porphyrin according its combination inside the composite fiber, since the response rates dramatically increased (toluene and acetic acid). Finally, the opposite effect of the working temperature on the sensitivity of the porphyrin-doped fibers (i.e., increasing) and the porphyrin-free fibers (i.e., decreasing) seemed further confirmation of the key role of such a macromolecule in the VOC (volatile organic compound) adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...