Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
Int J Hyg Environ Health ; 259: 114375, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604105

ABSTRACT

BACKGROUND: Agbogbloshie in Ghana is the world's biggest dumpsite for the informal recycling of electronic waste (e-waste). E-waste is dismantled by rudimentary methods without personal or environmental protection. Workers and occupants are exposed to lead. There are no data so far about the extent and the consequences. We therefore analyzed blood lead levels (BLL) and creatinine levels (CL). METHODS: Full blood samples and basic data (i.e. age, job, length of stay) were collected from dumpsite volunteers. BLL were measured by atomic absorption spectrometry; CL were assessed using the standard clinical laboratory procedures of Aachen Technical University. European BLL reference values were used as Ghana lacks its own. Statistical analysis was by non-parametric tests (Mann-Whitney U test), with p < 0.05. RESULTS: Participants of both sexes (n = 327; 12-68 years; median age 23 years) were assessed. Most workers were aged <30 years. The collective's BLL was in pathological range for 77.7%; 14% had a BLL >10.0 µg/dl with symptoms consistent with high lead exposure including severe (6.5%) and intermediate (39%) renal disorder. BLL above 15.0 µg/dl were found in 5.9% of all workers which is the German threshold for those working with lead. Elevated CL in a pathological range were found in 254 participants. This is problematic as 75% of the lead entering the body is excreted via urine. CONCLUSION: Most of our volunteers had pathological BLL and CL. Preventive strategies are necessary to reduce health risks, particularly for vulnerable populations (i.e. children, pregnant women).

2.
Laryngoscope ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366759

ABSTRACT

OBJECTIVES: Decision-making for patients with a locally advanced laryngeal carcinoma (T3 and T4) is challenging due to the treatment choice between organ preservation and laryngectomy, both with different and high impact on function and quality of life (QoL). The complexity of these treatment decisions and their possible consequences might lead to decisional conflict (DC). This study aimed to explore the level of DC in locally advanced laryngeal carcinoma patients facing curative decision-making, and to identify possible associated factors. METHODS: In this multicenter prospective cohort study, participants completed questionnaires on DC, level of shared decision-making (SDM), and a knowledge test directly after counseling and 6 months after treatment. Descriptive statistics and Spearman correlation tests were used to analyze the data. RESULTS: Directly after counseling, almost all participants (44/45; 98%) experienced Clinically Significant DC score (CSDC >25, scale 0-100). On average, patients scored 47% (SD 20%) correct on the knowledge test. Questions related to radiotherapy were answered best (69%, SD 29%), whilst only 35% (SD 29%) of the questions related to laryngectomy were answered correctly. Patients' perceived level of SDM (scale 0-100) was 70 (mean, SD 16.2), and for physicians this was 70 (SD 1.7). CONCLUSION: Most patients with advanced larynx cancer experience high levels of DC. Low knowledge levels regarding treatment aspects indicate a need for better patient counseling. LEVEL OF EVIDENCE: Level IV Laryngoscope, 2024.

3.
Eur Radiol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345607

ABSTRACT

OBJECTIVES: A prospective, multi-centre study to evaluate concordance of morphologic lung MRI and CT in chronic obstructive pulmonary disease (COPD) phenotyping for airway disease and emphysema. METHODS: A total of 601 participants with COPD from 15 sites underwent same-day morpho-functional chest MRI and paired inspiratory-expiratory CT. Two readers systematically scored bronchial wall thickening, bronchiectasis, centrilobular nodules, air trapping and lung parenchyma defects in each lung lobe and determined COPD phenotype. A third reader acted as adjudicator to establish consensus. Inter-modality and inter-reader agreement were assessed using Cohen's kappa (im-κ and ir-κ). RESULTS: The mean combined MRI score for bronchiectasis/bronchial wall thickening was 4.5/12 (CT scores, 2.2/12 for bronchiectasis and 6/12 for bronchial wall thickening; im-κ, 0.04-0.3). Expiratory right/left bronchial collapse was observed in 51 and 47/583 on MRI (62 and 57/599 on CT; im-κ, 0.49-0.52). Markers of small airways disease on MRI were 0.15/12 for centrilobular nodules (CT, 0.34/12), 0.94/12 for air trapping (CT, 0.9/12) and 7.6/12 for perfusion deficits (CT, 0.37/12 for mosaic attenuation; im-κ, 0.1-0.41). The mean lung defect score on MRI was 1.3/12 (CT emphysema score, 5.8/24; im-κ, 0.18-0.26). Airway-/emphysema/mixed COPD phenotypes were assigned in 370, 218 and 10 of 583 cases on MRI (347, 218 and 34 of 599 cases on CT; im-κ, 0.63). For all examined features, inter-reader agreement on MRI was lower than on CT. CONCLUSION: Concordance of MRI and CT for phenotyping of COPD in a multi-centre setting was substantial with variable inter-modality and inter-reader concordance for single diagnostic key features. CLINICAL RELEVANCE STATEMENT: MRI of lung morphology may well serve as a radiation-free imaging modality for COPD in scientific and clinical settings, given that its potential and limitations as shown here are carefully considered. KEY POINTS: • In a multi-centre setting, MRI and CT showed substantial concordance for phenotyping of COPD (airway-/emphysema-/mixed-type). • Individual features of COPD demonstrated variable inter-modality concordance with features of pulmonary hypertension showing the highest and bronchiectasis showing the lowest concordance. • For all single features of COPD, inter-reader agreement was lower on MRI than on CT.

4.
Radiol Cardiothorac Imaging ; 5(2): e220176, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124637

ABSTRACT

Purpose: To investigate morphofunctional chest MRI for the detection and management of incidental pulmonary nodules in participants with chronic obstructive pulmonary disease (COPD). Materials and Methods: In this prospective study, 567 participants (mean age, 66 years ± 9 [SD]; 340 men) underwent same-day contrast-enhanced MRI and nonenhanced low-dose CT (LDCT) in a nationwide multicenter trial (clinicaltrials.gov: NCT01245933). Nodule dimensions, morphologic features, and Lung Imaging Reporting and Data System (Lung-RADS) category were assessed at MRI by two blinded radiologists, and consensual LDCT results served as the reference standard. Comparisons were performed using the Student t test, and agreements were assessed using the Cohen weighted κ. Results: A total of 525 nodules larger than 3 mm in diameter were detected at LDCT in 178 participants, with a mean diameter of 7.2 mm ± 6.1 (range, 3.1-63.1 mm). Nodules were not detected in the remaining 389 participants. Sensitivity and positive predictive values with MRI for readers 1 and 2, respectively, were 63.0% and 84.8% and 60.2% and 83.9% for solid nodules (n = 495), 17.6% and 75.0% and 17.6% and 60.0% for part-solid nodules (n = 17), and 7.7% and 100% and 7.7% and 50.0% for ground-glass nodules (n = 13). For nodules 6 mm or greater in diameter, sensitivity and positive predictive values were 73.3% and 92.2% for reader 1 and 71.4% and 93.2% for reader 2, respectively. Readers underestimated the long-axis diameter at MRI by 0.5 mm ± 1.7 (reader 1) and 0.5 mm ± 1.5 (reader 2) compared with LDCT (P < .001). For Lung-RADS categorization per nodule using MRI, there was substantial to perfect interreader agreement (κ = 0.75-1.00) and intermethod agreement compared with LDCT (κ = 0.70-1.00 and 0.69-1.00). Conclusion: In a multicenter setting, morphofunctional MRI showed moderate sensitivity for detection of incidental pulmonary nodules in participants with COPD but high agreement with LDCT for Lung-RADS classification of nodules.Clinical trial registration no. NCT01245933 and NCT02629432Keywords: MRI, CT, Thorax, Lung, Chronic Obstructive Pulmonary Disease, Screening© RSNA, 2023 Supplemental material is available for this article.

6.
Cancers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36765858

ABSTRACT

Inadequate resection margins in head and neck squamous cell carcinoma surgery necessitate adjuvant therapies such as re-resection and radiotherapy with or without chemotherapy and imply increasing morbidity and worse prognosis. On the other hand, taking larger margins by extending the resection also leads to avoidable increased morbidity. Oropharyngeal squamous cell carcinomas (OPSCCs) are often difficult to access; resections are limited by anatomy and functionality and thus carry an increased risk for close or positive margins. Therefore, there is a need to improve intraoperative assessment of resection margins. Several intraoperative techniques are available, but these often lead to prolonged operative time and are only suitable for a subgroup of patients. In recent years, new diagnostic tools have been the subject of investigation. This study reviews the available literature on intraoperative techniques to improve resection margins for OPSCCs. A literature search was performed in Embase, PubMed, and Cochrane. Narrow band imaging (NBI), high-resolution microendoscopic imaging, confocal laser endomicroscopy, frozen section analysis (FSA), ultrasound (US), computed tomography scan (CT), (auto) fluorescence imaging (FI), and augmented reality (AR) have all been used for OPSCC. NBI, FSA, and US are most commonly used and increase the rate of negative margins. Other techniques will become available in the future, of which fluorescence imaging has high potential for use with OPSCC.

7.
Arch Toxicol ; 97(4): 1033-1045, 2023 04.
Article in English | MEDLINE | ID: mdl-36717398

ABSTRACT

The solvent 1,3-dichlorobenzene (1,3-DCB) is formed during thermal decomposition of the initiator 2,4-dichlorobenzoylperoxide in the production of silicone rubber with potential exposure of production workers as shown in previous works. Despite a threshold limit value (MAK value) of 2 ppm in air, there are currently no data about the corresponding internal exposure that would allow for the derivation of a biological limit value. In the present study, we have investigated the absorption of 1,3-DCB and urinary kinetics of its metabolites in 10 human volunteers after controlled inhalative exposure. Due to the strong odour of 1,3-DCB, a subjective evaluation of odour nuisance was also performed. Ten male human volunteers (23-36 yrs.) were exposed 6 h/day to a concentration of 0.7 ppm and 1.5 ppm in the Aachen workplace simulation laboratory (AWSL) with one week between each experiment. In order to investigate potential dermal absorption, the volunteers were exposed to 1.5 ppm wearing a suitable filter mask that prevented inhalative exposure in a third exposure. 1,3-DCB in blood was measured after 3 and 6 h exposure and the urinary metabolites 3,5-dichlorocatechol (3,5-DCC), 2,4-dichlorophenol (2,4-DCP) and 3,5-dichlorophenol (3,5-DCP) were measured over 24 h after exposure via LC/MS/MS. There were clear dose-response relations for all investigated parameters. The maximum excretion of the metabolites was reached at the end of exposure and corresponded to 5.2 ± 0.7 mg/g crea, 1.5 ± 0.35 mg/g crea and 0.07 ± 0.011 mg/g crea at 0.7 ppm and to 12.0 ± 3 mg/g crea, 3.5 ± 1.1 mg/g crea and 0.17 ± 0.05 mg/g crea at 1.5 ppm for 3,5-DCC, 2,4-DCP and 3,5-DCP, respectively. The use of filter masks decreased the internal exposure for about 85-90%, indicating substantial dermal absorption. Odour perception did not show a dose-response, probably due to fast olfactory adaption. The human study presented here provides an excellent basis for deriving a biological limit value for 1,3-DCB.


Subject(s)
Chlorophenols , Occupational Exposure , Humans , Male , Healthy Volunteers , Tandem Mass Spectrometry , Occupational Exposure/analysis
8.
Front Med (Lausanne) ; 10: 1254003, 2023.
Article in English | MEDLINE | ID: mdl-38249975

ABSTRACT

Introduction: Due to hypoxic vasoconstriction, perfusion is interesting in the lungs. Magnetic Resonance Imaging (MRI) perfusion imaging based on Dynamic Contrast Enhancement (DCE) has been demonstrated in patients with Chronic Obstructive Pulmonary Diseases (COPD) using visual scores, and quantification methods were recently developed further. Inter-patient correlations of echo time-dependent observed T1 [T1(TE)] have been shown with perfusion scores, pulmonary function testing, and quantitative computed tomography. Here, we examined T1(TE) quantification and quantitative perfusion MRI together and investigated both inter-patient and local correlations between T1(TE) and quantitative perfusion. Methods: 22 patients (age 68.0 ± 6.2) with COPD were examined using morphological MRI, inversion recovery multi-echo 2D ultra-short TE (UTE) in 1-2 slices for T1(TE) mapping, and 4D Time-resolved angiography With Stochastic Trajectories (TWIST) for DCE. T1(TE) maps were calculated from 2D UTE at five TEs from 70 to 2,300 µs. Pulmonary Blood Flow (PBF) and perfusion defect (QDP) maps were produced from DCE measurements. Lungs were automatically segmented on UTE images and morphological MRI and these segmentations registered to DCE images. DCE images were separately registered to UTE in corresponding slices and divided into corresponding subdivisions. Spearman's correlation coefficients were calculated for inter-patient correlations using the entire segmented slices and for local correlations separately using registered images and subdivisions for each TE. Median T1(TE) in normal and defect areas according to QDP maps were compared. Results: Inter-patient correlations were strongest on average at TE2 = 500 µs, reaching up to |ρ| = 0.64 for T1 with PBF and |ρ| = 0.76 with QDP. Generally, local correlations of T1 with PBF were weaker at TE2 than at TE1 or TE3 and with maximum values of |ρ| = 0.66 (from registration) and |ρ| = 0.69 (from subdivision). In 18 patients, T1 was shorter in defect areas than in normal areas, with the relative difference smallest at TE2. Discussion: The inter-patient correlations of T1 with PBF and QDP found show similar strength and TE-dependence as those previously reported for visual perfusion scores and quantitative computed tomography. The local correlations and median T1 suggest that not only base T1 but also the TE-dependence of observed T1 in normal areas is closer to that found previously in healthy volunteers than in defect areas.

9.
Gait Posture ; 97: 80-85, 2022 09.
Article in English | MEDLINE | ID: mdl-35914387

ABSTRACT

BACKGROUND: Quantitative gait assessment is increasingly applied in fall risk stratification, diagnosis, and disease monitoring of neuro-geriatric gait disorders. Its broad application, however, demands for low-cost and mobile solutions that facilitate high-quality assessment outside laboratory settings. The aim of this study was to present and evaluate the concurrent validity of a mobile and low-cost gait assessment tool (mVEGAS) that combines body-fixed inertial sensors and a smartphone-based video capture for spatiotemporal identification of gait sequences. METHODS: Initially, we examined potential interferences of wearing mVEGAS with walking performance in a cohort of 20 young healthy individuals (31.1 ± 10.1 years; 8 females). Subsequently, we assessed the concurrent validity of mVEGAS as compared to a pressure-sensitive gait carpet (GAITRite) in a cohort of 26 healthy individuals (55.8 ± 14.3 years; 10 females) and 26 patients (55.7 ± 14.0; 14 females) with moderate to severe degrees of cerebellar gait ataxia. All participants were instructed to walk at preferred, slow, and fast walking speed and standard average and variability gait measures including velocity, stride length, stride time, base of support, swing and double support phase were examined for agreement between the two systems by absolute error and intraclass correlation coefficients (ICC). RESULTS: Wearing mVEGAS did only marginally interfere with normal walking behavior. mVEGAS-derived average and variability gait measures exhibited good to excellent concurrent validity in healthy individuals (ICCs ranging between 0.645 and 1.000) and patients with gait ataxia (ICCs ranging between 0.788 and 1.000) SIGNIFICANCE: mVEGAS may facilitate high-quality and long-term gait monitoring in different non-specialized environments such as medical practices, nursing homes or community centers.


Subject(s)
Gait Analysis , Gait Ataxia , Aged , Ataxia/diagnosis , Female , Gait , Gait Ataxia/diagnosis , Humans , Reproducibility of Results , Smartphone , Spatio-Temporal Analysis , Walking
10.
Data Brief ; 42: 108050, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35372651

ABSTRACT

We present data collected for the research article "Advances in Spiral fMRI: A High-resolution Study with Single-shot Acquisition" (Kasper et al. 2022). All data was acquired on a 7T ultra-high field MR system (Philips Achieva), equipped with a concurrent magnetic field monitoring setup based on 16 NMR probes. For task-based fMRI, a visual quarterfield stimulation paradigm was employed, alongside physiological monitoring via peripheral recordings. This data collection contains different datasets pertaining to different purposes: (1) Measured magnetic field dynamics (k0, spiral k-space trajectories, 2nd order spherical harmonics, concomitant fields) during ultra-high field fMRI sessions from six subjects, as well as concurrent temperature curves of the gradient coil, to explore MR system and subject-induced variability of field fluctuations and assess the impact of potential correction methods. (2) MR Raw Data, i.e., coil and concurrent encoding magnetic field (trajectory) data, of a single subject, as well as nominal spiral gradient waveforms, precomputed B0 and coil sensitivity maps, to enable testing of alternative image reconstruction approaches for spiral fMRI data. (3) Reconstructed image time series of the same subject alongside behavioral and physiological logfiles, to reproduce the fMRI preprocessing and analysis, as well as figures presented in the research article related to this article, using the published analysis code repository. All data is provided in standardized formats for the respective research area. In particular, ISMRMRD (HDF5) is used to store raw coil data and spiral trajectories, as well as measured field dynamics. Likewise, the NIfTI format is used for all imaging data (anatomical MRI and spiral fMRI, B0 and coil sensitivity maps).

11.
Eur Radiol ; 32(3): 1879-1890, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34553255

ABSTRACT

OBJECTIVES: Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) using DCE-MRI. METHODS: We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 83 subjects (age = 65.7 ± 9.0 years, patients-at-risk, and all GOLD groups) from one center of the "COSYCONET" COPD cohort. QDP was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu's method, k-means clustering, texture analysis, and 80th percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric response mapping (PRM) indices of emphysema (PRMEmph) and functional small airway disease (PRMfSAD), and FEV1/FVC from PFT. RESULTS: All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the highest association based on Otsu's method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with the strongest correlations with PRMEmph (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRMEmph (mean difference = 35.85 to 40.40) and PRMfSAD (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices (mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = - 0.54 to - 0.41, p < 0.001). CONCLUSION: QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived combined extent of PRMEmph and PRMfSAD. We propose to use QDP based on Otsu's method for future clinical studies in COPD. KEY POINTS: • QDP quantified from DCE-MRI is associated with visual MRI perfusion score, CT PRM indices, and PFT. • The extent of QDP from DCE-MRI corresponds to the combined extent of PRMEmph and PRMfSAD from CT. • Assessing pulmonary perfusion abnormalities using DCE-MRI with QDP improved the correlations with CT PRM indices and PFT compared to the quantification of pulmonary blood flow and volume.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Aged , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Middle Aged , Perfusion , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging , Tomography, X-Ray Computed
12.
Magn Reson Med ; 87(5): 2224-2238, 2022 05.
Article in English | MEDLINE | ID: mdl-34932233

ABSTRACT

PURPOSE: Many aspects and imperfections of gradient dynamics in MRI have been successfully captured by linear time-invariant (LTI) models. Changes in gradient behavior due to heating, however, violate time invariance. The goal of this work is to study such changes at the level of transfer functions and model them by thermal extension of the LTI framework. METHODS: To study the impact of gradient heating on transfer functions, a clinical MR system was heated using a range of high-amplitude DC and AC waveforms, each followed by measuring transfer functions in rapid succession while the system cooled down. Simultaneously, gradient temperature was monitored with an array of temperature sensors positioned according to initial infrared recordings of the gradient tube. The relation between temperatures and transfer functions is cast into local and global linear models. The models are analysed in terms of self-consistency, conditioning, and prediction performance. RESULTS: Pronounced thermal effects are observed in the time resolved transfer functions, largely attributable to in-coil eddy currents and mechanical resonances. Thermal modeling is found to capture these effects well. The keys to good model performance are well-placed temperature sensors and suitable training data. CONCLUSION: Heating changes gradient response, violating time invariance. The utility of LTI modeling can nevertheless be recovered by a linear thermal extension, relying on temperature sensing and adequate one-time training.


Subject(s)
Magnetic Resonance Imaging , Linear Models , Phantoms, Imaging
13.
Neuroimage ; 246: 118738, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34800666

ABSTRACT

Spiral fMRI has been put forward as a viable alternative to rectilinear echo-planar imaging, in particular due to its enhanced average k-space speed and thus high acquisition efficiency. This renders spirals attractive for contemporary fMRI applications that require high spatiotemporal resolution, such as laminar or columnar fMRI. However, in practice, spiral fMRI is typically hampered by its reduced robustness and ensuing blurring artifacts, which arise from imperfections in both static and dynamic magnetic fields. Recently, these limitations have been overcome by the concerted application of an expanded signal model that accounts for such field imperfections, and its inversion by iterative image reconstruction. In the challenging ultra-high field environment of 7 Tesla, where field inhomogeneity effects are aggravated, both multi-shot and single-shot 2D spiral imaging at sub-millimeter resolution was demonstrated with high depiction quality and anatomical congruency. In this work, we further these advances towards a time series application of spiral readouts, namely, single-shot spiral BOLD fMRI at 0.8 mm in-plane resolution. We demonstrate that high-resolution spiral fMRI at 7 T is not only feasible, but delivers both excellent image quality, BOLD sensitivity, and spatial specificity of the activation maps, with little artifactual blurring. Furthermore, we show the versatility of the approach with a combined in/out spiral readout at a more typical resolution (1.5 mm), where the high acquisition efficiency allows to acquire two images per shot for improved sensitivity by echo combination.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Functional Neuroimaging/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Feasibility Studies , Female , Humans , Male , Young Adult
14.
Neuroimage ; 245: 118674, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34718138

ABSTRACT

Spiral imaging is very well suited for functional MRI, however its use has been limited by the fact that artifacts caused by gradient imperfections and B0 inhomogeneity are more difficult to correct compared to EPI. Effective correction requires accurate knowledge of the traversed k-space trajectory. With the goal of making spiral fMRI more accessible, we have evaluated image reconstruction using trajectories predicted by the gradient impulse response function (GIRF), which can be determined in a one-time calibration step. GIRF-predicted reconstruction was tested for high-resolution (0.8 mm) fMRI at 7T. Image quality and functional results of the reconstructions using GIRF-prediction were compared to reconstructions using the nominal trajectory and concurrent field monitoring. The reconstructions using nominal spiral trajectories contain substantial artifacts and the activation maps contain misplaced activation. Image artifacts are substantially reduced when using the GIRF-predicted reconstruction, and the activation maps for the GIRF-predicted and monitored reconstructions largely overlap. The GIRF reconstruction provides a large increase in the spatial specificity of the activation compared to the nominal reconstruction. The GIRF-reconstruction generates image quality and fMRI results similar to using a concurrently monitored trajectory. The presented approach does not prolong or complicate the fMRI acquisition. Using GIRF-predicted trajectories has the potential to enable high-quality spiral fMRI in situations where concurrent trajectory monitoring is not available.


Subject(s)
Magnetic Resonance Imaging/methods , Algorithms , Artifacts , Brain Mapping , Calibration , Feasibility Studies , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging
15.
Arch Toxicol ; 95(8): 2659-2665, 2021 08.
Article in English | MEDLINE | ID: mdl-34152453

ABSTRACT

Methylisothiazolinone (MI) as well as the mixture of chloromethylisothiazolinone/methylisothiazolinone [MCI/MI (3:1)] are biocides that are used in a variety of products of every-day life. Due to the skin sensitizing properties of these biocides, their use has come under scrutiny. We have previously examined the human metabolism of MI and MCI after oral dosage of isotope-labelled analogues in human volunteers and confirmed N-methylmalonamic acid to be a major, but presumably unspecific human urinary metabolite. In the present study, we have investigated the urinary kinetics of a mercapturic acid metabolite of MI and MCI using the same set of samples. Four human volunteers received 2 mg of isotopically labelled MI and MCI separately and at least 2 weeks apart. Consecutive urine samples were collected over 48 h and were examined for the content of the (labelled) 3-mercapturic acid conjugate of 3-thiomethyl-N-methyl-propionamide ("M-12"), a known metabolite in rats. On a molar basis, M-12 represented 7.1% (3.0-10.1%) of the dose excreted in urine after dosage of MI. Excretion of this mercapturate was fast with a mean half-life of 3.6 h. Surprisingly, for MCI the mercapturate M-12 represented only 0.13% of the dose excreted in urine. Thus, this biomarker is highly specific for exposures to MI and might be used to distinguish between different exposure patterns of these biocides [use of MI or MCI/MI (3:1)] in the general population.


Subject(s)
Acetylcysteine/urine , Disinfectants/pharmacokinetics , Thiazoles/pharmacokinetics , Acetylcysteine/chemistry , Administration, Oral , Adult , Female , Half-Life , Humans , Male , Thiazoles/administration & dosage , Young Adult
16.
J Magn Reson Imaging ; 54(5): 1562-1571, 2021 11.
Article in English | MEDLINE | ID: mdl-34050576

ABSTRACT

BACKGROUND: There is a clinical need for imaging-derived biomarkers for the management of chronic obstructive pulmonary disease (COPD). Observed pulmonary T1 (T1 (TE)) depends on the echo-time (TE) and reflects regional pulmonary function. PURPOSE: To investigate the potential diagnostic value of T1 (TE) for the assessment of lung disease in COPD patients by determining correlations with clinical parameters and quantitative CT. STUDY TYPE: Prospective non-randomized diagnostic study. POPULATION: Thirty COPD patients (67.7 ± 6.6 years). Data from a previous study (15 healthy volunteers [26.2 ± 3.9 years) were used as reference. FIELD STRENGTH/SEQUENCE: Study participants were examined at 1.5 T using dynamic contrast-enhanced three-dimensional gradient echo keyhole perfusion sequence and a multi-echo inversion recovery two-dimensional UTE (ultra-short TE) sequence for T1 (TE) mapping at TE1-5  = 70 µsec, 500 µsec, 1200 µsec, 1650 µsec, and 2300 µsec. ASSESSMENT: Perfusion images were scored by three radiologists. T1 (TE) was automatically quantified. Computed tomography (CT) images were quantified in software (qCT). Clinical parameters including pulmonary function testing were also acquired. STATISTICAL TESTS: Spearman rank correlation coefficients (ρ) were calculated between T1 (TE) and perfusion scores, clinical parameters and qCT. A P-value <0.05 was considered statistically significant. RESULTS: Median values were T1 (TE1-5 ) = 644 ± 78 msec, 835 ± 92 msec, 835 ± 87 msec, 831 ± 131 msec, 893 ± 220 msec, all significantly shorter than previously reported in healthy subjects. A significant increase of T1 was observed from TE1 to TE2 , with no changes from TE2 to TE3 (P = 0.48), TE3 to TE4 (P = 0.94) or TE4 to TE5 (P = 0.02) which demonstrates an increase at shorter TEs than in healthy subjects. Moderate to strong Spearman's correlations between T1 and parameters including the predicted diffusing capacity for carbon monoxide (DLCO, ρ < 0.70), mean lung density (MLD, ρ < 0.72) and the perfusion score (ρ > -0.69) were found. Overall, correlations were strongest at TE2 , weaker at TE1 and rarely significant at TE4 -TE5 . DATA CONCLUSION: In COPD patients, the increase of T1 (TE) with TE occurred at shorter TEs than previously found in healthy subjects. Together with the lack of correlation between T1 and clinical parameters of disease at longer TEs, this suggests that T1 (TE) quantification in COPD patients requires shorter TEs. The TE-dependence of correlations implies that T1 (TE) mapping might be developed further to provide diagnostic information beyond T1 at a single TE. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive , Humans , Lung/diagnostic imaging , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Respiratory Function Tests
17.
J Am Coll Health ; 69(7): 783-790, 2021 10.
Article in English | MEDLINE | ID: mdl-31944901

ABSTRACT

OBJECTIVE: The purpose of this study was to explore (a) current utilization rates of university mental health services among American Indian/Alaskan Native/Native Hawaiian (AI/AN/NH) student veterans and (b) predictors of mental health service utilization among AI/AN student veterans. Participants: Data for this cross-sectional study were obtained from the American College Health Association (ACHA)'s 2011-2014 National College Health Assessment II (n = 103). Methods: University mental health service utilization rates were calculated as a percentage for AI/AN/NH student veterans. Multivariable logistic regression was used to determine predictors of mental health service utilization. Results: Results showed that 14% of AI/AN/NH student veterans have used university mental health services. Predictors of mental health service utilization in this population included financial stress, lack of deployment during service, suicidal ideation, and a diagnosis of depression, model χ2 (13) = 162. 128, p < 0.001, Nagelkerke R2 = 0.130. Conclusion: This research identified gaps in service provision for AI/AN service member and veteran students on college campuses and provided possible models for intervention development.


Subject(s)
Veterans , Cross-Sectional Studies , Humans , Students , United States , Universities , American Indian or Alaska Native
18.
Magn Reson Med ; 85(4): 1924-1937, 2021 04.
Article in English | MEDLINE | ID: mdl-33280160

ABSTRACT

PURPOSE: Spiral readouts combine several favorable properties that promise superior net sensitivity for diffusion imaging. The purpose of this study is to verify the signal-to-noise ratio (SNR) benefit of spiral acquisition in comparison with current echo-planar imaging (EPI) schemes. METHODS: Diffusion-weighted in vivo brain data from three subjects were acquired with a single-shot spiral sequence and several variants of single-shot EPI, including full-Fourier and partial-Fourier readouts as well as different diffusion-encoding schemes. Image reconstruction was based on an expanded signal model including field dynamics obtained by concurrent field monitoring. The effective resolution of each sequence was matched to that of full-Fourier EPI with 1 mm nominal resolution. SNR maps were generated by determining the noise statistics of the raw data and analyzing the propagation of equivalent synthetic noise through image reconstruction. Using the same approach, maps of noise amplification due to parallel imaging (g-factor) were calculated for different acceleration factors. RESULTS: Relative to full-Fourier EPI at b = 0 s/mm2 , spiral acquisition yielded SNR gains of 42-88% and 40-89% in white and gray matter, respectively, depending on the diffusion-encoding scheme. Relative to partial-Fourier EPI, the gains were 36-44% and 34-42%. Spiral g-factor maps exhibited less spatial variation and lower maxima than their EPI counterparts. CONCLUSION: Spiral readouts achieve significant SNR gains in the order of 40-80% over EPI in diffusion imaging at 3T. Combining systematic effects of shorter echo time, readout efficiency, and favorable g-factor behavior, similar benefits are expected across clinical and neurosciences uses of diffusion imaging.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Brain/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Signal-To-Noise Ratio
19.
Sci Rep ; 10(1): 21587, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299007

ABSTRACT

Degradation of polychlorinated biphenyls (PCBs) is initiated by cytochrome P450 (CYP) enzymes and includes PCB oxidation to OH-metabolites, which often display a higher toxicity than their parental compounds. In search of an animal model reflecting PCB metabolism and toxicity, we tested Drosophila melanogaster, a well-known model system for genetics and human disease. Feeding Drosophila with lower chlorinated (LC) PCB congeners 28, 52 or 101 resulted in the detection of a human-like pattern of respective OH-metabolites in fly lysates. Feeding flies high PCB 28 concentrations caused lethality. Thus we silenced selected CYPs via RNA interference and analyzed the effect on PCB 28-derived metabolite formation by assaying 3-OH-2',4,4'-trichlorobiphenyl (3-OHCB 28) and 3'-OH-4',4,6'-trichlorobiphenyl (3'-OHCB 28) in fly lysates. We identified several drosophila CYPs (dCYPs) whose knockdown reduced PCB 28-derived OH-metabolites and suppressed PCB 28 induced lethality including dCYP1A2. Following in vitro analysis using a liver-like CYP-cocktail, containing human orthologues of dCYP1A2, we confirm human CYP1A2 as a PCB 28 metabolizing enzyme. PCB 28-induced mortality in flies was accompanied by locomotor impairment, a common phenotype of neurodegenerative disorders. Along this line, we show PCB 28-initiated caspase activation in differentiated fly neurons. This suggested the loss of neurons through apoptosis. Our findings in flies are congruent with observation in human exposed to high PCB levels. In plasma samples of PCB exposed humans, levels of the neurofilament light chain increase after LC-PCB exposure, indicating neuronal damage. In summary our findings demonstrate parallels between Drosophila and the human systems with respect to CYP mediated metabolism and PCB mediated neurotoxicity.


Subject(s)
Activation, Metabolic/drug effects , Cytochrome P-450 Enzyme System/metabolism , Drosophila melanogaster/drug effects , Liver/drug effects , Polychlorinated Biphenyls/toxicity , Animals , Drosophila melanogaster/metabolism , Liver/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism
20.
J Magn Reson Imaging ; 52(6): 1645-1654, 2020 12.
Article in English | MEDLINE | ID: mdl-32613717

ABSTRACT

BACKGROUND: Noninvasive monitoring of early abnormalities and therapeutic intervention in cystic fibrosis (CF) lung disease using MRI is important. Lung T1 mapping has shown potential for local functional imaging without contrast material. Recently, it was discovered that observed lung T1 depends on the measurement echo time (TE). PURPOSE: To examine TE-dependence of observed T1 in patients with CF and its correlation with clinical metrics. STUDY TYPE: Prospective. POPULATION: In all, 75 pediatric patients with CF (8.6 ± 6.1 years, range 0.1-23 years), with 32 reexamined after 1 year. FIELD STRENGTH/SEQUENCE: Patients were examined at 1.5T using an established MRI protocol and a multiecho inversion recovery 2D ultrashort echo time (UTE) sequence for T1 (TE) mapping at five TEs including TE1 = 70 µs. ASSESSMENT: Morphological and perfusion MRI were assessed by a radiologist (M.W.) with 11 years of experience using an established CF-MRI scoring system. T1 (TE) was quantified automatically. Clinical data including spirometry (FEV1pred%) and lung clearance index (LCI) were collected. STATISTICAL TESTS: T1 (TE) was correlated with the CF-MRI score, clinical data, and LCI. RESULTS: T1 (TE) showed a different curvature in CF than in healthy adults: T1 at TE1 was shorter in CF (1157 ms ± 73 ms vs. 1047 ms ± 70 ms, P < 0.001), but longer at TE3 (1214 ms ± 72 ms vs. 1314 ms ± 68 ms, P < 0.001) and later TEs. The correlations of T1 (TE) with patient age (ρTE1-TE5 = -0.55, -0.44, -0.24, -0.30, -0.22), and LCI (ρTE1-TE5 = -0.43, -0.42, -0.33, 0.27, -0.22) were moderate at ultra-short to short TE (P < 0.001) but decreased for longer TE. Moderate but similar correlations at all TE were found with MRI perfusion score (ρTE1-TE5 = -0.43, -0.51, -0.47, -0.46, -0.44) and FEV1pred% (ρTE1-TE5 = +0.44, +0.44, +0.43, +0.40, +0.39) (P < 0.05). DATA CONCLUSION: TE should be considered when measuring lung T1 , since observed differences between CF and healthy subjects strongly depend on TE. The different variation of correlation coefficients with TE for structural vs. functional metrics implies that TE-dependence holds additional information which may help to discern effects of tissue structural abnormalities and abnormal perfusion. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1645-1654.


Subject(s)
Cystic Fibrosis , Adult , Benchmarking , Child , Cystic Fibrosis/diagnostic imaging , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Respiratory Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...