Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(8): e0224958, 2020.
Article in English | MEDLINE | ID: mdl-32756568

ABSTRACT

Tracking changes in total biomass production or land productivity is an essential part of monitoring land transformations and long-term alterations of the health and productive capacity of land that are typically associated with land degradation. Persistent declines in land productivity impact many terrestrial ecosystem services that form the basis for sustainable livelihoods of human communities. Protected areas (PAs) are key to globally conserve biodiversity and ecosystem services that are critical for human well-being, and cover about 15% of the land worldwide. Here we globally assess the trends in land productivity in PAs of at least 10 km2 and in their unprotected surroundings (10 km buffers) from 1999 to 2013. We quantify the percentage of the protected and unprotected land that shows stable, increasing or decreasing trends in land productivity, quantified as long-term (15 year) changes in above-ground biomass derived from satellite-based observations with a spatial resolution of 1 km. We find that 44% of the land in PAs globally has retained the productivity at stable levels from 1999 to 2013, compared to 42% of stable productivity in the unprotected land around PAs. Persistent increases in productivity are more common in the unprotected lands around PAs (32%) than within PAs (18%) globally, while about 14% of the protected land and 12% of the unprotected land around PAs has experienced declines in land productivity. Oceania has the highest percentage of land with stable productivity in PAs (57%), whereas Europe has the lowest percentage (38%) and also the largest share of protected land with increasing land productivity (32%). We discuss the observed differences between PAs and unprotected lands, and between different parts of the world, in relation to different types and levels of human activities and their impact on land productivity. Our assessment of land productivity dynamics helps to characterise the state, pressures and changes in and around protected areas globally. Further research may focus on more detailed analyses to disentangle the relative contribution of specific drivers (from climate change to land use change) and their interaction with land productivity dynamics and potential land degradation in different regions of the world.


Subject(s)
Biomass , Conservation of Natural Resources/trends , Ecosystem , Biodiversity , Efficiency , Geography , History, 20th Century , History, 21st Century , Humans
2.
Glob Ecol Conserv ; 24: e01291, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33457468

ABSTRACT

Protected areas (PAs) are a key strategy in global efforts to conserve biodiversity and ecosystem services that are critical for human well-being. Most PAs have some built-up structures within their boundaries or in surrounding areas, ranging from individual buildings to villages, towns and cities. These structures, and the associated human activities, can exert direct and indirect pressures on PAs. Here we present the first global analysis of current patterns and observed long-term trends in built-up areas within terrestrial PAs and their immediate surroundings. We calculate for each PA larger than 5 km2 and for its 10-km unprotected buffer zone the percentage of land area covered by built-up areas in 1975, 1990, 2000 and 2014. We find that globally built-up areas cover only 0.12% of PA extent and a much higher 2.71% of the unprotected buffers as of 2014, compared to 0.6% of all land (protected or unprotected). Built-up extent in and around PAs is highest in Europe and Asia, and lowest in Africa and Oceania. Built-up area percentage is higher in coastal and small PAs, and lower in older PAs and in PAs with stricter management categories. From 1975 to 2014, the increase in built-up area was 23 times larger in the 10-km unprotected buffers than within PAs. Our findings show that the development of built-up structures remains limited within the boundaries of PAs but highlight the need to carefully manage the considerable pressure that PAs face from their immediate surroundings.

3.
Biol Conserv ; 238: 108183, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31885400

ABSTRACT

Connectivity of protected areas (PAs) is needed to ensure the long-term persistence of biodiversity and ecosystem service delivery. The Convention on Biological Diversity agreed in 2010 to have 17% of land covered by well-connected PA systems by 2020 (Aichi Target 11). We here globally assess, for all countries, the trends in terrestrial PA connectivity every other year from 2010 to 2018 using the ProtConn indicator, which quantifies how well the PA systems are designed to support connectivity. The percentage of protected connected land (ProtConn) has increased globally from 6.5% in 2010 to 7.7% in 2018. Oceania experienced the largest recent increase in PA connectivity, whereas Asia is the only content with a lower ProtConn in 2018 than in 2010. Globally, the relative increase in the percentage of protected connected land (ProtConn) is nearly twice that of the percentage of land under protection (PA coverage), due to clear improvements in the design of PA systems for connectivity in many regions. The connectivity of the PA networks has become more dependent on the permeability of the unprotected landscape matrix in between PAs and on the coordinated management of adjacent PAs with different designations and of transboundary PA linkages. The relatively slow recent increase in PA connectivity globally (2016-2018) raises doubt as to whether connectivity targets will be met by 2020, and suggests that considerable further action is required to promote better-connected PA systems globally, including the expansion of the PA systems to cover key areas for connectivity in many countries and regions.

4.
PLoS One ; 14(1): e0210496, 2019.
Article in English | MEDLINE | ID: mdl-30653553

ABSTRACT

Inland waters are unique ecosystems offering services and habitat resources upon which many species depend. Despite the importance of, and threats to, inland water, global assessments of protected area (PA) coverage and trends have focused on land habitats or have assessed land and inland waters together. We here provide the first assessment of the level of protection of inland open surface waters and their trends (1984-2015) within PAs for all countries, using a globally consistent, high-resolution (30 m) and validated dataset on permanent and seasonal surface waters based on Landsat images. Globally, 15% of inland surface waters are covered by PAs with mapped boundaries. Estimated inland water protection increases to 16.4% if PAs with reported area but delineated only as points are included as circular buffers. These coverage estimates slightly exceed the comparable figure for land but fall below the 17% goal of the Convention on Biological Diversity's Aichi Target 11 for 2020. Protection levels are very uneven across countries, half of which do not yet meet the 17% target. The lowest coverage of surface water by PAs (<5%) was found in Africa and in parts of Asia. There was a global trend of permanent water losses and seasonal water gains within PAs, concomitant with an increase of both water types outside PAs. In 38% of countries, PAs lost over 5% of permanent water. Global protection targets for inland waters may well be met by 2020, but much stronger efforts are required to ensure their effective conservation, which will depend not only on sound PA governance and management but also on the sustainable use of water resources outside PAs. Given the pressures on water in a rapidly changing world, integrated management planning of water resources involving multiple sectors and entire basins is therefore necessary.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Water Resources , Water Supply/statistics & numerical data , Animals , Biodiversity , Conservation of Natural Resources/trends , Forestry/statistics & numerical data , Geography , Humans , Trees/classification , Trees/growth & development
5.
Biol Conserv ; 219: 53-67, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29503460

ABSTRACT

Connectivity of protected areas (PAs) is crucial for meeting their conservation goals. We provide the first global evaluation of countries' progress towards Aichi Target 11 of the Convention on Biological Diversity that is to have at least 17% of the land covered by well-connected PA systems by 2020. We quantify how well the terrestrial PA systems of countries are designed to promote connectivity, using the Protected Connected (ProtConn) indicator. We refine ProtConn to focus on the part of PA connectivity that is in the power of a country to influence, i.e. not penalizing countries for PA isolation due to the sea and to foreign lands. We found that globally only 7.5% of the area of the countries is covered by protected connected lands, which is about half of the global PA coverage of 14.7%, and that only 30% of the countries currently meet the Aichi Target 11 connectivity element. These findings suggest the need for considerable efforts to improve PA connectivity globally. We further identify the main priorities for improving or sustaining PA connectivity in each country: general increase of PA coverage, targeted designation of PAs in strategic locations for connectivity, ensuring permeability of the unprotected landscapes between PAs, coordinated management of neighbouring PAs within the country, and/or transnational coordination with PAs in other countries. Our assessment provides a key contribution to evaluate progress towards global PA connectivity targets and to highlight important strengths and weaknesses of the design of PA systems for connectivity in the world's countries and regions.

6.
Conserv Biol ; 32(1): 116-126, 2018 02.
Article in English | MEDLINE | ID: mdl-28664996

ABSTRACT

Wilderness areas are ecologically intact landscapes predominantly free of human uses, especially industrial-scale activities that result in substantial biophysical disturbance. This definition does not exclude land and resource use by local communities who depend on such areas for subsistence and bio-cultural connections. Wilderness areas are important for biodiversity conservation and sustain key ecological processes and ecosystem services that underpin planetary life-support systems. Despite these widely recognized benefits and values of wilderness, they are insufficiently protected and are consequently being rapidly eroded. There are increasing calls for multilateral environmental agreements to make a greater and more systematic contribution to wilderness conservation before it is too late. We created a global map of remaining terrestrial wilderness following the established last-of-the-wild method, which identifies the 10% of areas with the lowest human pressure within each of Earth's 62 biogeographic realms and identifies the 10 largest contiguous areas and all contiguous areas >10,000 km2 . We used our map to assess wilderness coverage by the World Heritage Convention and to identify gaps in coverage. We then identified large nationally designated protected areas with good wilderness coverage within these gaps. One-quarter of natural and mixed (i.e., sites of both natural and cultural value) World Heritage Sites (WHS) contained wilderness (total of 545,307 km2 ), which is approximately 1.8% of the world's wilderness extent. Many WHS had excellent wilderness coverage, for example, the Okavango Delta in Botswana (11,914 km2 ) and the Central Suriname Nature Reserve (16,029 km2 ). However, 22 (35%) of the world's terrestrial biorealms had no wilderness representation within WHS. We identified 840 protected areas of >500 km2 that were predominantly wilderness (>50% of their area) and represented 18 of the 22 missing biorealms. These areas offer a starting point for assessing the potential for the designation of new WHSs that could help increase wilderness representation on the World Heritage list. We urge the World Heritage Convention to ensure that the ecological integrity and outstanding universal value of existing WHS with wilderness values are preserved.


Subject(s)
Ecosystem , Wilderness , Biodiversity , Conservation of Natural Resources , Ecology , Humans
8.
PLoS One ; 8(5): e65370, 2013.
Article in English | MEDLINE | ID: mdl-23734249

ABSTRACT

There is an emerging consensus that protected areas are key in reducing adverse land-cover change, but their efficacy remains difficult to quantify. Many previous assessments of protected area effectiveness have compared changes between sets of protected and unprotected sites that differ systematically in other potentially confounding respects (e.g. altitude, accessibility), have considered only forest loss or changes at single sites, or have analysed changes derived from land-cover data of low spatial resolution. We assessed the effectiveness of protection in reducing land-cover change in Important Bird Areas (IBAs) across Africa using a dedicated visual interpretation of higher resolution satellite imagery. We compared rates of change in natural land-cover over a c. 20-year period from around 1990 at a large number of points across 45 protected IBAs to those from 48 unprotected IBAs. A matching algorithm was used to select sample points to control for potentially confounding differences between protected and unprotected IBAs. The rate of loss of natural land-cover at sample points within protected IBAs was just 42% of that at matched points in unprotected IBAs. Conversion was especially marked in forests, but protection reduced rates of forest loss by a similar relative amount. Rates of conversion increased from the centre to the edges of both protected and unprotected IBAs, but rates of loss in 20-km buffer zones surrounding protected IBAs and unprotected IBAs were similar, with no evidence of displacement of conversion from within protected areas to their immediate surrounds (leakage).


Subject(s)
Birds/growth & development , Conservation of Natural Resources/methods , Ecosystem , Trees/growth & development , Africa , Altitude , Animals , Computer Simulation , Conservation of Natural Resources/statistics & numerical data , Geography , Models, Theoretical , Population Density
9.
PLoS One ; 7(3): e32529, 2012.
Article in English | MEDLINE | ID: mdl-22457717

ABSTRACT

Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as 'important sites'). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45-1.14% annually since 1950 for IBAs and 0.79-1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Extinction, Biological , Plants/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...