Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Cell Biol ; 103(2): 151399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38412640

ABSTRACT

Desmin gene mutations cause myopathies and cardiomyopathies. Our previously characterised R349P desminopathy mice, which carry the ortholog of the common human desmin mutation R350P, showed marked alterations in mitochondrial morphology and function in muscle tissue. By isolating skeletal muscle myoblasts from offspring of R349P desminopathy and p53 knock-out mice, we established an immortalised cellular disease model. Heterozygous and homozygous R349P desmin knock-in and wild-type myoblasts could be well differentiated into multinucleated spontaneously contracting myotubes. The desminopathy myoblasts showed the characteristic disruption of the desmin cytoskeleton and desmin protein aggregation, and the desminopathy myotubes showed the characteristic myofibrillar irregularities. Long-term electrical pulse stimulation promoted myotube differentiation and markedly increased their spontaneous contraction rate. In both heterozygous and homozygous R349P desminopathy myotubes, this treatment restored a regular myofibrillar cross-striation pattern as seen in wild-type myotubes. High-resolution respirometry of mitochondria purified from myotubes by density gradient ultracentrifugation revealed normal oxidative phosphorylation capacity, but a significantly reduced proton leak in mitochondria from the homozygous R349P desmin knock-in cells. Consistent with a reduced proton flux across the inner mitochondrial membrane, our quantitative proteomic analysis of the purified mitochondria revealed significantly reduced levels of ADP/ATP translocases in the homozygous R349P desmin knock-in genotype. As this alteration was also detected in the soleus muscle of R349P desminopathy mice, which, in contrast to the mitochondria purified from cultured cells, showed a variety of other dysregulated mitochondrial proteins, we consider this finding to be an early step in the pathogenesis of secondary mitochondriopathy in desminopathy.


Subject(s)
Desmin , Muscle Fibers, Skeletal , Animals , Desmin/metabolism , Desmin/genetics , Mice , Muscle Fibers, Skeletal/metabolism , Gene Knock-In Techniques , Protons , Mitochondria/metabolism , Muscular Dystrophies , Cardiomyopathies
2.
Eur J Cell Biol ; 102(2): 151330, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37290222

ABSTRACT

To study processes related to weightlessness in ground-based cell biological research, a theoretically assumed microgravity environment is typically simulated using a clinostat - a small laboratory device that rotates cell culture vessels with the aim of averaging out the vector of gravitational forces. Here, we report that the rotational movement during fast clinorotation induces complex fluid motions in the cell culture vessel, which can trigger unintended cellular responses. Specifically, we demonstrate that suppression of myotube formation by 2D-clinorotation at 60 rpm is not an effect of the assumed microgravity but instead is a consequence of fluid motion. Therefore, cell biological results from fast clinorotation cannot be attributed to microgravity unless alternative explanations have been rigorously tested and ruled out. We consider two control experiments mandatory, i) a static, non-rotating control, and ii) a control for fluid motion. These control experiments are also highly recommended for other rotation speed settings and experimental conditions. Finally, we discuss strategies to minimize fluid motion in clinorotation experiments.


Subject(s)
Weightlessness , Rotation , Cell Culture Techniques , Muscle Fibers, Skeletal
3.
Int J Mol Sci ; 23(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36233322

ABSTRACT

Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.


Subject(s)
Cardiomyopathies , Desmin , Hexokinase , Amino Acids/metabolism , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Citrates/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Desmin/genetics , Desmin/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Mice , Mice, Knockout , Myocardium/metabolism , Oxidative Phosphorylation , Proteomics
4.
Neuropathol Appl Neurobiol ; 48(1): e12750, 2022 02.
Article in English | MEDLINE | ID: mdl-34312900

ABSTRACT

AIMS: We investigated N471D WASH complex subunit strumpellin (Washc5) knock-in and Washc5 knock-out mice as models for hereditary spastic paraplegia type 8 (SPG8). METHODS: We generated heterozygous and homozygous N471D Washc5 knock-in mice and subjected them to a comprehensive clinical, morphological and laboratory parameter screen, and gait analyses. Brain tissue was used for proteomic analysis. Furthermore, we generated heterozygous Washc5 knock-out mice. WASH complex subunit strumpellin expression was determined by qPCR and immunoblotting. RESULTS: Homozygous N471D Washc5 knock-in mice showed mild dilated cardiomyopathy, decreased acoustic startle reactivity, thinner eye lenses, increased alkaline phosphatase and potassium levels and increased white blood cell counts. Gait analyses revealed multiple aberrations indicative of locomotor instability. Similarly, the clinical chemistry, haematology and gait parameters of heterozygous mice also deviated from the values expected for healthy animals, albeit to a lesser extent. Proteomic analysis of brain tissue depicted consistent upregulation of BPTF and downregulation of KLHL11 in heterozygous and homozygous knock-in mice. WASHC5-related protein interaction partners and complexes showed no change in abundancies. Heterozygous Washc5 knock-out mice showing normal WASHC5 levels could not be bred to homozygosity. CONCLUSIONS: While biallelic ablation of Washc5 was prenatally lethal, expression of N471D mutated WASHC5 led to several mild clinical and laboratory parameter abnormalities, but not to a typical SPG8 phenotype. The consistent upregulation of BPTF and downregulation of KLHL11 suggest mechanistic links between the expression of N471D mutated WASHC5 and the roles of both proteins in neurodegeneration and protein quality control, respectively.


Subject(s)
Proteomics , Spastic Paraplegia, Hereditary , Animals , Brain/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Mutation , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism
5.
Exp Physiol ; 106(10): 2038-2045, 2021 10.
Article in English | MEDLINE | ID: mdl-34387385

ABSTRACT

NEW FINDINGS: What is the central question of this study? While muscle fibre atrophy in response to immobilisation has been extensively examined, intramuscular connective tissue, particularly endomysium, has been largely neglected: does endomysium content of the soleus muscle increase during bed rest? What is the main finding and its importance? Absolute endomysium content did not change, and previous studies reporting an increase are explicable by muscle fibre atrophy. It must be expected that even a relative connective tissue accumulation will lead to an increase in muscle stiffness. ABSTRACT: Muscle fibres atrophy during conditions of disuse. Whilst animal data suggest an increase in endomysium content with disuse, that information is not available for humans. We hypothesised that endomysium content increases during immobilisation. To test this hypothesis, biopsy samples of the soleus muscle obtained from 21 volunteers who underwent 60 days of bed rest were analysed using immunofluorescence-labelled laminin γ-1 to delineate individual muscle fibres as well as the endomysium space. The endomysium-to-fibre-area ratio (EFAr, as a percentage) was assessed as a measure related to stiffness, and the endomysium-to-fibre-number ratio (EFNr) was calculated to determine whether any increase in EFAr was absolute, or could be attributed to muscle fibre shrinkage. As expected, we found muscle fibre atrophy (P = 0.0031) that amounted to shrinkage by 16.6% (SD 28.2%) on day 55 of bed rest. ENAr increased on day 55 of bed rest (P < 0.001). However, when analysing EFNr, no effect of bed rest was found (P = 0.62). These results demonstrate that an increase in EFAr is likely to be a direct effect of muscle fibre atrophy. Based on the assumption that the total number of muscle fibres remains unchanged during 55 days of bed rest, this implies that the absolute amount of connective tissue in the soleus muscle remained unchanged. The increased relative endomysium content, however, could be functionally related to an increase in muscle stiffness.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Animals , Bed Rest , Humans , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/pathology , Myocardium
6.
Circulation ; 142(22): 2155-2171, 2020 12.
Article in English | MEDLINE | ID: mdl-33023321

ABSTRACT

BACKGROUND: Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype. METHODS: We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation. Sections of the explanted heart were analyzed with antibodies specific to 406W-desmin and to intercalated disc proteins. Effects of the R406W mutation on the molecular properties of desmin were addressed by cell transfection and in vitro assembly experiments. To prove the genuine deleterious effect of the mutation on heart tissue, we further generated and analyzed R405W-desmin knock-in mice harboring the orthologous form of the human R406W-desmin. RESULTS: Microscopic analysis of the explanted heart revealed desmin aggregates and the absence of desmin filaments at intercalated discs. Structural changes within intercalated discs were revealed by the abnormal organization of desmoplakin, plectin, N-cadherin, and connexin-43. Next-generation sequencing confirmed the DES variant c.1216C>T (p.R406W) as the sole disease-causing mutation. Cell transfection studies disclosed a dual behavior of R406W-desmin with both its integration into the endogenous intermediate filament system and segregation into protein aggregates. In vitro, R406W-desmin formed unusually thick filaments that organized into complex filament aggregates and fibrillar sheets. In contrast, assembly of equimolar mixtures of mutant and wild-type desmin generated chimeric filaments of seemingly normal morphology but with occasional prominent irregularities. Heterozygous and homozygous R405W-desmin knock-in mice develop both a myopathy and a cardiomyopathy. In particular, the main histopathologic results from the patient are recapitulated in the hearts from R405W-desmin knock-in mice of both genotypes. Moreover, whereas heterozygous knock-in mice have a normal life span, homozygous animals die at 3 months of age because of a smooth muscle-related gastrointestinal phenotype. CONCLUSIONS: We demonstrate that R406W-desmin provokes its severe cardiotoxic potential by a novel pathomechanism, where the concurrent dual functional states of mutant desmin assembly complexes underlie the uncoupling of desmin filaments from intercalated discs and their structural disorganization.


Subject(s)
Cardiomyopathies/genetics , Cardiomyopathies/therapy , Desmin/genetics , Myocardium/pathology , Severity of Illness Index , Adolescent , Animals , Cardiac Catheterization/methods , Cardiomyopathies/diagnostic imaging , Desmin/metabolism , Gene Knock-In Techniques/methods , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/ultrastructure , Pacemaker, Artificial
7.
PLoS One ; 15(3): e0228913, 2020.
Article in English | MEDLINE | ID: mdl-32126091

ABSTRACT

BACKGROUND: Mutations in the human desmin gene (DES) cause autosomal-dominant and -recessive cardiomyopathies, leading to heart failure, arrhythmias, and AV blocks. We analyzed the effects of vascular pressure overload in a patient-mimicking p.R349P desmin knock-in mouse model that harbors the orthologue of the frequent human DES missense mutation p.R350P. METHODS AND RESULTS: Transverse aortic constriction (TAC) was performed on heterozygous (HET) DES-p.R349P mice and wild-type (WT) littermates. Echocardiography demonstrated reduced left ventricular ejection fraction in HET-TAC (WT-sham: 69.5 ± 2.9%, HET-sham: 64.5 ± 4.7%, WT-TAC: 63.5 ± 4.9%, HET-TAC: 55.7 ± 5.4%; p<0.01). Cardiac output was significantly reduced in HET-TAC (WT sham: 13088 ± 2385 µl/min, HET sham: 10391 ± 1349µl/min, WT-TAC: 8097 ± 1903µl/min, HET-TAC: 5793 ± 2517µl/min; p<0.01). Incidence and duration of AV blocks as well as the probability to induce ventricular tachycardias was highest in HET-TAC. We observed reduced mtDNA copy numbers in HET-TAC (WT-sham: 12546 ± 406, HET-sham: 13526 ± 781, WT-TAC: 11155 ± 3315, HET-TAC: 8649 ± 1582; p = 0.025), but no mtDNA deletions. The activity of respiratory chain complexes I and IV showed the greatest reductions in HET-TAC. CONCLUSION: Pressure overload in HET mice aggravated the clinical phenotype of cardiomyopathy and resulted in mitochondrial dysfunction. Preventive avoidance of pressure overload/arterial hypertension in desminopathy patients might represent a crucial therapeutic measure.


Subject(s)
Amino Acid Substitution , Atrioventricular Block/physiopathology , Cardiomyopathies/physiopathology , Desmin/genetics , Animals , Atrioventricular Block/genetics , Cardiomyopathies/genetics , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Heterozygote , Humans , Male , Mice , Stroke Volume
8.
Eur J Cell Biol ; 98(5-8): 151046, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31677819

ABSTRACT

CRN2 is an actin filament binding protein involved in the regulation of various cellular processes including cell migration and invasion. CRN2 has been implicated in the malignant progression of different types of human cancer. We used CRN2 knock-out mice for analyses as well as for crossbreeding with a Tp53/Pten knock-out glioblastoma mouse model. CRN2 knock-out mice were subjected to a phenotyping screen at the German Mouse Clinic. Murine glioblastoma tissue specimens as well as cultured murine brain slices and glioblastoma cell lines were investigated by immunohistochemistry, immunofluorescence, and cell biological experiments. Protein interactions were studied by immunoprecipitation, pull-down, and enzyme activity assays. CRN2 knock-out mice displayed neurological and behavioural alterations, e.g. reduced hearing sensitivity, reduced acoustic startle response, hypoactivity, and less frequent urination. While glioblastoma mice with or without the additional CRN2 knock-out allele exhibited no significant difference in their survival rates, the increased levels of CRN2 in transplanted glioblastoma cells caused a higher tumour cell encasement of murine brain slice capillaries. We identified two important factors of the tumour microenvironment, the tissue inhibitor of matrix metalloproteinase 4 (TIMP4) and the matrix metalloproteinase 14 (MMP14, synonym: MT1-MMP), as novel binding partners of CRN2. All three proteins mutually interacted and co-localised at the front of lamellipodia, and CRN2 was newly detected in exosomes. On the functional level, we demonstrate that CRN2 increased the secretion of TIMP4 as well as the catalytic activity of MMP14. Our results imply that CRN2 represents a pro-invasive effector within the tumour cell microenvironment of glioblastoma multiforme.


Subject(s)
Glioblastoma/metabolism , Matrix Metalloproteinase 14/metabolism , Microfilament Proteins/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Animals , Glioblastoma/diagnostic imaging , Mice , Mice, Knockout , Microfilament Proteins/deficiency , Tumor Cells, Cultured , Tumor Microenvironment , Tissue Inhibitor of Metalloproteinase-4
9.
Biochem Biophys Res Commun ; 503(4): 2770-2777, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30100055

ABSTRACT

Heterozygous missense mutations in the human VCP gene cause inclusion body myopathy associated with Paget disease of bone and fronto-temporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). The exact molecular mechanisms by which VCP mutations cause disease manifestation in different tissues are incompletely understood. In the present study, we report the comprehensive analysis of a newly generated R155C VCP knock-in mouse model, which expresses the ortholog of the second most frequently occurring human pathogenic VCP mutation. Heterozygous R155C VCP knock-in mice showed decreased plasma lactate, serum albumin and total protein concentrations, platelet numbers, and liver to body weight ratios, and increased oxygen consumption and CD8+/Ly6C + T-cell fractions, but none of the typical human IBMPFD or ALS pathologies. Breeding of heterozygous mice did not yield in the generation of homozygous R155C VCP knock-in animals. Immunoblotting showed identical total VCP protein levels in human IBMPFD and murine R155C VCP knock-in tissues as compared to wild-type controls. However, while in human IBMPFD skeletal muscle tissue 70% of the total VCP mRNA was derived from the mutant allele, in R155C VCP knock-in mice only 5% and 7% mutant mRNA were detected in skeletal muscle and brain tissue, respectively. The lack of any obvious IBMPFD or ALS pathology could thus be a consequence of the very low expression of mutant VCP. We conclude that the increased and decreased fractions of the R155C mutant VCP mRNA in man and mice, respectively, are due to missense mutation-induced, divergent alterations in the biological half-life of the human and murine mutant mRNAs. Furthermore, our work suggests that therapy approaches lowering the expression of the mutant VCP mRNA below a critical threshold may ameliorate the intrinsic disease pathology.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Genes, Lethal , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Myositis, Inclusion Body/genetics , Osteitis Deformans/genetics , Valosin Containing Protein/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Brain/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression Regulation , Gene Knock-In Techniques , Heterozygote , Humans , Male , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Myositis, Inclusion Body/metabolism , Myositis, Inclusion Body/pathology , Osteitis Deformans/metabolism , Osteitis Deformans/pathology , Signal Transduction , Species Specificity , Valosin Containing Protein/metabolism
10.
Neurobiol Aging ; 56: 213.e1-213.e5, 2017 08.
Article in English | MEDLINE | ID: mdl-28551275

ABSTRACT

Mutations of the human valosin-containing protein, p97 (VCP) and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex genes cause motor neuron and cognitive impairment disorders. Here, we analyzed a cohort of German patients with sporadic amyotrophic lateral sclerosis and frontotemporal lobar degeneration comorbidity (ALS/FTD) for VCP and WASH complex gene mutations. Next-generation panel sequencing of VCP, WASH1, FAM21C, CCDC53, SWIP, strumpellin, F-actin capping protein of muscle Z-line alfa 1 (CAPZA1), and CAPZB genes was performed in 43 sporadic ALS/FTD patients. Subsequent analyses included Sanger sequencing, in silico analyses, real-time PCR, and CCDC53 immunoblotting. We identified 1 patient with the heterozygous variant c.26C>T in CAPZA1, predicted to result in p.Ser9Leu, and a second with the heterozygous start codon variant c.2T>C in CCDC53. In silico analysis predicted structural changes in the N-terminus of CAPZα1, which may interfere with CAPZα:CAPZß dimerization. Though the translation initiation codon of CCDC53 is mutated, real-time PCR and immunoblotting did neither reveal any evidence for a CCDC53 haploinsufficiency nor for aberrant CCDC53 protein species. Moreover, a disease-causing C9orf72 repeat expansion mutation was later on identified in this patient. Thus, with the exception of a putatively pathogenic heterozygous c.26C>T CAPZA1 variant, our genetic analysis did not reveal mutations in VCP and the remaining WASH complex subunits.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Lobar Degeneration/genetics , Genetic Association Studies , Microfilament Proteins/genetics , Mutation/genetics , Valosin Containing Protein/genetics , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/epidemiology , CapZ Actin Capping Protein/genetics , Cohort Studies , Comorbidity , Female , Frontotemporal Lobar Degeneration/epidemiology , Genetic Predisposition to Disease/genetics , Germany/epidemiology , Humans , Male , Membrane Proteins/genetics , Middle Aged , Proteins/genetics
11.
Acta Neuropathol ; 132(3): 453-73, 2016 09.
Article in English | MEDLINE | ID: mdl-27393313

ABSTRACT

Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.


Subject(s)
Desmin/genetics , Intermediate Filaments/pathology , Mitochondria/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Animals , Cytoskeleton/metabolism , Cytoskeleton/pathology , Desmin/metabolism , Humans , Intermediate Filaments/genetics , Mice, Transgenic , Mitochondria/pathology , Muscular Diseases/pathology , Mutation/genetics
12.
Eur J Cell Biol ; 95(8): 239-51, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27178841

ABSTRACT

Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments.


Subject(s)
4-Butyrolactone/analogs & derivatives , Actin Cytoskeleton/metabolism , Fibroblasts/metabolism , Microtubules/metabolism , 4-Butyrolactone/metabolism , Animals , Cell Movement , Intermediate Filaments , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...