Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928855

ABSTRACT

Glutathione is a potent antioxidant that has shown promise in enhancing the processing of various foods and drinks such as bread and wine. Saccharomyces cerevisiae stands as a primary microorganism for glutathione production. This study sought to assess the potential of pulsed electric fields (PEFs) in extracting glutathione from S. cerevisiae cells. Yeast cells were subjected to PEF treatment (12 kV/cm, 150 µs) followed by incubation at varying pH values (4.0, 6.0, and 8.0) and temperatures (4 °C and 25 °C). Glutathione and protein extraction were assessed at different incubation times. Within one hour of incubation, PEF-treated yeast cells released over 60% of their total glutathione content, irrespective of pH and temperature. Notably, the antioxidant activity of the resulting extract surpassed that obtained through complete mechanical cell destruction and hot water, which form the conventional industrial extraction method in the glutathione industry. These results suggest that PEF could offer a rapid and more selective procedure, improving the extraction of this bioactive compound.

2.
Front Bioeng Biotechnol ; 11: 1197710, 2023.
Article in English | MEDLINE | ID: mdl-37214279

ABSTRACT

One strategy to reduce cost and improve feasibility of waste-yeast biomass valorization is to obtain a spectrum of marketable products rather than just a single one. This study explores the potential of Pulsed Electric Fields (PEF) for the development of a cascade process designed to obtain several valuable products from Saccharomyces cerevisiae yeast biomass. Yeast biomass was treated by PEF, which affected the viability of 50%, 90%, and over 99% of S. cerevisiae cells, depending on treatment intensity. Electroporation caused by PEF allowed access to the cytoplasm of the yeast cell without causing total breakdown of the cell structure. This outcome was an essential prerequisite to be able to perform a sequential extraction of several value-added biomolecules from yeast cells located in the cytosol and in the cell wall. After incubating yeast biomass previously subjected to a PEF treatment that affected the viability of 90% of cells for 24 h, an extract with 114.91 ± 2.86, 7.08 ± 0.64, and 187.82 ± 3.75 mg/g dry weight of amino acids, glutathione, and protein, respectively, was obtained. In a second step, the extract rich in cytosol components was removed after 24 h of incubation and the remaining cell biomass was re-suspended with the aim of inducing cell wall autolysis processes triggered by the PEF treatment. After 11 days of incubation, a soluble extract containing mannoproteins and pellets rich in ß-glucans were obtained. In conclusion, this study proved that electroporation triggered by PEF permitted the development of a cascade procedure designed to obtain a spectrum of valuable biomolecules from S. cerevisiae yeast biomass while reducing the generation of waste.

3.
Food Res Int ; 165: 112525, 2023 03.
Article in English | MEDLINE | ID: mdl-36869525

ABSTRACT

The use of sulfites (SO2) for microbial control in the winemaking process is currently being questioned due to its potential toxicity. Pulsed Electric Fields (PEF) are capable of inactivating microorganisms at low temperatures, thus avoiding the negative effects of heat on food properties. In this study, the capacity of PEF technology for the decontamination of yeasts involved in the fermentation process of Chardonnay wine from a winery was evaluated. PEF treatments at 15 kV/cm of low (65 µs, 35 kJ/kg) and higher intensity (177 µs 97 kJ/kg) were selected for evaluating the microbial stability, physicochemical and volatile composition of wine. Even with the least intense PEF-treatment, Chardonnay wine remained yeast-free during 4 months of storage without sulfites. PEF-treatments did not affect the wine's oenological parameters or its aroma during storage. This study, therefore, reveals the potential of PEF technology as an alternative to sulfites for the microbiological stabilization of wine.


Subject(s)
Sulfites , Wine , Fermentation , Saccharomyces cerevisiae , Cold Temperature
4.
Foods ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36673367

ABSTRACT

New techniques are required to replace the use of sulfur dioxide (SO2) or of sterilizing filtration in wineries, due to those methods' drawbacks. Pulsed electric fields (PEF) is a technology capable of inactivating microorganisms at low temperatures in a continuous flow with no detrimental effect on food properties. In the present study, PEF technology was evaluated for purposes of microbial decontamination of red wines after alcoholic and malolactic fermentation, respectively. PEF combined with SO2 was evaluated in terms of microbial stability and physicochemical parameters over a period of four months. Furthermore, the effect of PEF on the sensory properties of red wine was compared with the sterilizing filtration method. Results showed that up to 4.0 Log10 cycles of S. cerevisiae and O. oeni could be eradicated by PEF and sublethal damages and a synergetic effect with SO2 were also observed, respectively. After 4 months, wine treated by PEF after alcoholic fermentation was free of viable yeasts; and less than 100 CFU/mL of O. oeni cells were viable in PEF-treated wine added with 20 ppm of SO2 after malolactic fermentation. No detrimental qualities were found, neither in terms of oenological parameters, nor in the sensory parameters of wines subjected to PEF after storage time.

5.
Foods ; 11(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35206097

ABSTRACT

This study's aim is to evaluate Pulsed Electric Fields (PEF) technology as an alternative method for the processing of red grape juice. For this purpose, two PEF treatments were applied: first to grapes for polyphenol enrichment of the juice, and subsequently for microbial decontamination of the obtained juice. Juice obtained from PEF-treated grapes (5 kV/cm, 63.4 kJ/kg) had the polyphenol content 1.5-fold higher and colour intensity two times higher of control juices by spectrophotometric measurement (p ≤ 0.05). A subsequent decontamination treatment by PEF (17.5 kV/cm and 173.6 kJ/kg) achieved inactivation of the present microbiota (yeasts, moulds, and vegetative mesophilic bacteria) below detection level (<30 CFU/mL). Furthermore, PEF-treated juices were microbiologically stable up to 45 days, even at abusive refrigeration storage temperatures (10 °C). PEF juice quality and sensory characteristics were similar to a fresh juice; they were neither affected by the PEF decontamination treatment, nor by storage time and temperature. Results obtained in this study demonstrate the considerable potential of PEF for the production of a polyphenol-enriched and microbially stabilized red grape juice as a unique and sustainable alternative for the juice industry, while avoiding enzymatic and heat treatments.

SELECTION OF CITATIONS
SEARCH DETAIL