Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1056: 70-78, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30797463

ABSTRACT

Gas chromatography (GC) and mass spectrometry (MS) are powerful, complementary techniques for the analysis of environmental toxicants. Currently, most GC-MS instruments employ electron ionization under vacuum, but the concept of coupling GC to atmospheric pressure ionization (API) is attracting revitalized interest. API conditions are inherently compatible with a wide range of ionization techniques as well high carrier gas flows that enable fast GC separations. This study reports on the application of atmospheric pressure chemical ionization (APCI) and a custom-built photoionization (APPI) source for the GC-MS analysis of polybrominated diphenyl ethers (PBDEs), a ubiquitous class of flame retardants. Photoionization of PBDEs resulted in the abundant formation of molecular ions M•+ with very little fragmentation. Some photo-oxidation was observed, which differentiated critical BDE isomers. Formation of protonated molecules [M+H]+ did not occur in GC-APPI because the ionization energy of H2O (clusters) exceeds the energy of the ionizing photons. Avoiding mixed-mode ionization is a major advantage of APPI over APCI, which requires careful control of the source conditions. A fast GC-API-MS method was developed using helium and nitrogen carrier gases that provides good separation of critical isomers (BDE-49/71) and elution of BDE 209 in less than 7 min (with He) and 15 min (with N2). It will be shown that the GC-APPI and GC-APCI methods match the sensitivity and improve upon the selectivity and throughput of established methods for the analysis of PBDEs using standard reference materials (NIST SRM 1944 and SRM 2585) and selected environmental samples.


Subject(s)
Atmospheric Pressure , Flame Retardants/analysis , Gas Chromatography-Mass Spectrometry , Halogenated Diphenyl Ethers/chemistry , Environment , Halogenated Diphenyl Ethers/analysis , Time Factors
2.
J Mass Spectrom ; 53(6): 504-510, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29577498

ABSTRACT

The use of gas chromatography coupled to high-resolution magnetic sector mass spectrometers (GC-HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC-HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API-MS/MS, 1 traditional EI-MS/MS, an API-quadrupole time of flight mass spectrometer (API-QTOF), and a EI-high-resolution TOF (EI-HRTOF). This study compared these 5 instruments to a GC-HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API-MS/MS instruments provide the greatest overall improvement in MDL value over the GC-HRMS with a 1.5 to 2-fold improvement. The API-QTOF and EI-TOF demonstrate slight increases in MDL value as compared with the GC-HRMS with a 1.5-fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC-HRMS. All 5 instruments offer a viable alternative to GC-HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.

3.
Anal Bioanal Chem ; 408(15): 4043-54, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27052771

ABSTRACT

A rapid extraction and cleanup method for the screening of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments is described which combines a modified QuEChERS extraction with carbon reversed-phase solid phase extraction cleanup. This approach is compared to the classical Soxhlet extraction and multi-column cleanup method in terms of toxic equivalence quotients (TEQs), precision, instrumental chromatography, method detection limits (MDLs), recovery of (13)C-labelled quantitation standard, sample preparation time, workload capacity, and sustainability factors. TEQs of 32 sediment samples were found to be well correlated and differed by 16 ± 10 % between the two methods. Certified and standard reference sediments differed by 4.1 and 6.7 %, respectively. Precision and instrumental chromatography were comparable. While the modified QuEChERS method had higher MDLs and lower recoveries, in terms of preparation time and workload capacity, the modified QuEChERS approach can prepare approximately 30 samples per day as compared to 10-20 samples in 3 to 4 days for the classic method. The modified QuEChERS method was also found to be safer and greener. The appreciable improvement in capacity makes the modified QuEChERS approach a suitable alternative to the classical method for applications where turnaround time and the number of samples that can be analyzed are more important than minimal detection limits. Graphical Abstract Created using Microsoft Paint for Windows 7 Professional A bar graph with the structures of dioxins and furans on the x axis shows agreement between two sets of data. A legend labels the first set of data as Soxhlet. The Soxhlet set is illustrated as four days crossed off of a calendar page, a Soxhlet extractor, and several packed chromatography columns. The legend identifies the second set of data as QuEChERS. The QuEChERS set is represented by a clock face marked with twenty four hours, two centrifuge tubes containing the sediment and reagents before and after salting out, and a carbon column attached to a reservoir.

4.
Environ Sci Technol ; 48(23): 13844-54, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25365627

ABSTRACT

Assessing the toxicological significance of complex environmental mixtures is challenging due to the large number of unidentified contaminants. Nontargeted analytical techniques may serve to identify bioaccumulative contaminants within complex contaminant mixtures without the use of analytical standards. This study exposed three freshwater organisms (Lumbriculus variegatus, Hexagenia spp., and Pimephales promelas) to a highly contaminated soil collected from a recycling plant fire site. Biota extracts were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and mass defect filtering to identify bioaccumulative halogenated contaminants. Specific bioaccumulative isomers were identified by comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry (GCxGC-HRToF). Targeted analysis of mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PXDD/PXDFs, X = Br and Cl) was performed by atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS). Relative sediment and biota instrument responses were used to estimate biota-sediment accumulation factors (BSAFs). Bioaccumulating contaminants varied among species and included polychlorinated naphthalenes (PCNs), polychlorinated dibenzofurans (PCDFs), chlorinated and mixed brominated/chlorinated anthracenes/phenanthrenes, and pyrenes/fluoranthenes (Cl-PAHs and X-PAHs, X = Br and Cl), as well as PXDD/PXDFs. Bioaccumulation potential among isomers also varied. This study demonstrates how complementary high-resolution mass spectrometry techniques identify persistent and bioaccumulative contaminants (and specific isomers) of environmental concern.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Oligochaeta/metabolism , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms , Benzofurans/analysis , Biota , Cyprinidae/metabolism , Dibenzofurans, Polychlorinated , Dioxins/analysis , Fourier Analysis , Fresh Water/analysis , Halogenation , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...