Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 11(1): 15819, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349176

ABSTRACT

Oligomerization of Pr55Gag is a critical step of the late stage of the HIV life cycle. It has been known that the binding of IP6, an abundant endogenous cyclitol molecule at the MA domain, has been linked to the oligomerization of Pr55Gag. However, the exact binding site of IP6 on MA remains unknown and the structural details of this interaction are missing. Here, we present three high-resolution crystal structures of the MA domain in complex with IP6 molecules to reveal its binding mode. Additionally, extensive Differential Scanning Fluorimetry analysis combined with cryo- and ambient-temperature X-ray crystallography and GNM-based transfer entropy calculations identify the key residues that participate in IP6 binding. Our data provide novel insights about the multilayered HIV-1 virion assembly process that involves the interplay of IP6 with PIP2, a phosphoinositide essential for the binding of Pr55Gag to membrane. IP6 and PIP2 have neighboring alternate binding sites within the same highly basic region (residues 18-33). This indicates that IP6 and PIP2 bindings are not mutually exclusive and may play a key role in coordinating virion particles' membrane localization. Based on our three different IP6-MA complex crystal structures, we propose a new model that involves IP6 coordination of the oligomerization of outer MA and inner CA domain's 2D layers during assembly and budding.


Subject(s)
Cell Membrane/metabolism , HIV Infections/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Precursors/chemistry , Protein Precursors/metabolism , Binding Sites , Crystallography, X-Ray , HIV Infections/pathology , HIV Infections/virology , HIV-1/physiology , Humans , Models, Molecular , Protein Conformation , Protein Domains , Virus Assembly
2.
Structure ; 29(12): 1382-1396.e6, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34403647

ABSTRACT

The COVID-19 pandemic has resulted in 198 million reported infections and more than 4 million deaths as of July 2021 (covid19.who.int). Research to identify effective therapies for COVID-19 includes: (1) designing a vaccine as future protection; (2) de novo drug discovery; and (3) identifying existing drugs to repurpose them as effective and immediate treatments. To assist in drug repurposing and design, we determine two apo structures of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease at ambient temperature by serial femtosecond X-ray crystallography. We employ detailed molecular simulations of selected known main protease inhibitors with the structures and compare binding modes and energies. The combined structural and molecular modeling studies not only reveal the dynamics of small molecules targeting the main protease but also provide invaluable opportunities for drug repurposing and structure-based drug design strategies against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/chemistry , Drug Design , Drug Repositioning , SARS-CoV-2 , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Dimerization , Molecular Conformation , Molecular Docking Simulation , Principal Component Analysis , Protein Conformation , Recombinant Proteins/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL