Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Toxicol ; 9: 61-72, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31008414

ABSTRACT

The fields of toxicology and chemical risk assessment seek to reduce, and eventually replace, the use of animals for the prediction of toxicity in humans. In this context, physiologically based kinetic (PBK) modelling based on in vitro and in silico kinetic data has the potential to a play significant role in reducing animal testing, by providing a methodology capable of incorporating in vitro human data to facilitate the development of in vitro to in vivo extrapolation of hazard information. In the present article, we discuss the challenges in: 1) applying PBK modelling to support regulatory decision making under the toxicology and risk-assessment paradigm shift towards animal replacement; 2) constructing PBK models without in vivo animal kinetic data, while relying solely on in vitro or in silico methods for model parameterization; and 3) assessing the validity and credibility of PBK models built largely using non-animal data. The strengths, uncertainties, and limitations of PBK models developed using in vitro or in silico data are discussed in an effort to establish a higher degree of confidence in the application of such models in a regulatory context. The article summarises the outcome of an expert workshop hosted by the European Commission Joint Research Centre (EC-JRC) - European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), on "Physiologically-Based Kinetic modelling in risk assessment - reaching a whole new level in regulatory decision-making" held in Ispra, Italy, in November 2016, along with results from an international survey conducted in 2017 and recently reported activities occurring within the PBK modelling field. The discussions presented herein highlight the potential applications of next generation (NG)-PBK modelling, based on new data streams.

2.
Toxicol Lett ; 232(1): 21-7, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25455448

ABSTRACT

INTRODUCTION: Physiologically based pharmacokinetic (PBPK) models may be useful in emergency risk assessment, after acute exposure to chemicals, such as dichloromethane (DCM). We evaluated the applicability of three PBPK models for human risk assessment following a single exposure to DCM: one model is specifically developed for DCM (Bos) and the two others are semi-generic ones (Mumtaz and Jongeneelen). MATERIALS AND METHODS: We assessed the accuracy of the models' predictions by simulating exposure data from a previous healthy volunteer study, in which six subjects had been exposed to DCM for 1h. The time-course of both the blood DCM concentration and percentage of carboxyhemoglobin (HbCO) were simulated. RESULTS: With all models, the shape of the simulated time course resembled the shape of the experimental data. For the end of the exposure, the predicted DCM blood concentration ranged between 1.52-4.19mg/L with the Bos model, 1.42-4.04mg/L with the Mumtaz model, and 1.81-4.31mg/L with the Jongeneelen model compared to 0.27-5.44mg/L in the experimental data. % HbCO could be predicted only with the Bos model. The maximum predicted % HbCO ranged between 3.1 and 4.2% compared to 0.4-2.3% in the experimental data. The % HbCO predictions were more in line with the experimental data after adjustment of the Bos model for the endogenous HbCO levels. CONCLUSIONS: The Bos Mumtaz and Jongeneelen PBPK models were able to simulate experimental DCM blood concentrations reasonably well. The Bos model appears to be useful for calculating HbCO concentrations in emergency risk assessment.


Subject(s)
Computer Simulation , Methylene Chloride/pharmacokinetics , Methylene Chloride/poisoning , Models, Biological , Solvents/pharmacokinetics , Solvents/poisoning , Biomarkers/blood , Biotransformation , Carboxyhemoglobin/metabolism , Environmental Monitoring , Healthy Volunteers , Humans , Inhalation Exposure , Methylene Chloride/blood , Risk Assessment , Risk Factors , Tissue Distribution , Young Adult
3.
Regul Toxicol Pharmacol ; 67(2): 182-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23871753

ABSTRACT

Hazard characterisation is largely based on an approach of (statistically) comparing dose groups with the controls in order to derive points of departure such as no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs). This approach suggests the absence of any relevant effect at the NOAEL. The NOAEL approach has been debated for decades. A recent Scientific Opinion by the European Food Safety Authority (EFSA) concluded that the Benchmark Dose (BMD) approach should be preferred over the NOAEL approach for deriving human (health-based) limit or guidance values. Nonetheless, the BMD approach is used infrequently within European regulatory frameworks. The reason for this may lie in legislation or guidelines requiring the use of the NOAEL approach. In this context, various EU regulatory frameworks were examined on such demands. Interestingly, no single legislation was identified containing statutory requirements in conflict with the use of the BMD approach.


Subject(s)
Dose-Response Relationship, Drug , Government Regulation , Animals , Cosmetics/toxicity , Disinfectants/toxicity , European Union , Food Additives/toxicity , No-Observed-Adverse-Effect Level , Pesticides/toxicity , Risk Assessment/legislation & jurisprudence , Veterinary Drugs/toxicity
4.
Toxicol In Vitro ; 25(3): 589-604, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21167275

ABSTRACT

There are now numerous in vitro and in silico ADME alternatives to in vivo assays but how do different industries incorporate them into their decision tree approaches for risk assessment, bearing in mind that the chemicals tested are intended for widely varying purposes? The extent of the use of animal tests is mainly driven by regulations or by the lack of a suitable in vitro model. Therefore, what considerations are needed for alternative models and how can they be improved so that they can be used as part of the risk assessment process? To address these issues, the European Partnership for Alternative Approaches to Animal Testing (EPAA) working group on prioritization, promotion and implementation of the 3Rs research held a workshop in November, 2008 in Duesseldorf, Germany. Participants included different industry sectors such as pharmaceuticals, cosmetics, industrial- and agro-chemicals. This report describes the outcome of the discussions and recommendations (a) to reduce the number of animals used for determining the ADME properties of chemicals and (b) for considerations and actions regarding in vitro and in silico assays. These included: standardisation and promotion of in vitro assays so that they may become accepted by regulators; increased availability of industry in vivo kinetic data for a central database to increase the power of in silico predictions; expansion of the applicability domains of in vitro and in silico tools (which are not necessarily more applicable or even exclusive to one particular sector) and continued collaborations between regulators, academia and industry. A recommended immediate course of action was to establish an expert panel of users, developers and regulators to define the testing scope of models for different chemical classes. It was agreed by all participants that improvement and harmonization of alternative approaches is needed for all sectors and this will most effectively be achieved by stakeholders from different sectors sharing data.


Subject(s)
Animal Testing Alternatives , Congresses as Topic , Xenobiotics , Animals , Cells, Cultured , Computer Simulation , Europe , Industry , International Cooperation , Models, Chemical , Quantitative Structure-Activity Relationship , Xenobiotics/chemistry , Xenobiotics/pharmacokinetics , Xenobiotics/toxicity
5.
Hum Exp Toxicol ; 27(4): 269-76, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18684796

ABSTRACT

The new regulatory framework REACH (Registration, Evaluation, and Authorisation of Chemicals) foresees the use of non-testing approaches, such as read-across, chemical categories, structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs). Although information on skin absorption data are not a formal requirement under REACH, data on dermal absorption are an integral part of risk assessment of substances/products to which man is predominantly exposed via the dermal route. In this study, we assess the present applicability of publicly available QSARs on skin absorption for risk assessment purposes. We explicitly did not aim to give scientific judgments on individual QSARs. A total of 33 QSARs selected from the public domain were evaluated using the OECD (Organisation for Economic Co-operation and Development) Principles for the Validation of (Q)SAR Models. Additionally, several pragmatic criteria were formulated to select QSARs that are most suitable for their use in regulatory risk assessment. Based on these criteria, four QSARs were selected. The predictivity of these QSARs was evaluated by comparing their outcomes with experimentally derived skin absorption data (for 62 compounds). The predictivity was low for three of four QSARs, whereas one model gave reasonable predictions. Several suggestions are made to increase the applicability of QSARs for skin absorption for risk assessment purposes.


Subject(s)
Quantitative Structure-Activity Relationship , Risk Assessment/legislation & jurisprudence , Skin Absorption/drug effects , Xenobiotics , European Union , Government Regulation , Humans , Models, Biological , Predictive Value of Tests , Skin Absorption/physiology , Xenobiotics/chemistry , Xenobiotics/pharmacokinetics , Xenobiotics/toxicity
6.
Toxicol Lett ; 170(3): 214-22, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17462838

ABSTRACT

Future EU legislations enforce a fast hazard and risk assessment of thousands of existing chemicals. If conducted by means of present data requirements, this assessment will use a huge number of test animals and will be neither cost nor time effective. The purpose of the current research was to develop methods to increase the acceptability of in vitro data for classification and labelling regarding acute toxicity. For this purpose, a large existing database containing in vitro and in vivo data was analysed. For more than 300 compounds in the database, relations between in vitro cytotoxicity and rat or mouse intravenous and oral in vivo LD50 values were re-evaluated and the possibilities for definition of mechanism based chemical subclasses were investigated. A high in vitro-in vivo correlation was found for chemicals classified as irritants. This can be explained by a shared unspecific cytotoxicity of these compounds which will act as the predominant mode of action for both endpoints, irritation and acute toxicity. For this subclass, which covered almost 40% of all compounds in the database, the LD50 values after intravenous dosing could be predicted with high accuracy. A somewhat lower accuracy was found for the prediction of oral LD50 values based on in vitro cytotoxicity data. Based on this successful correlation, a classification and labelling scheme was developed, that includes a hazard based definition of the applicability domain (irritants) and a prediction of the labelling of compounds for their acute iv and oral toxicity. The scheme was tested by an external validation.


Subject(s)
Hazardous Substances/toxicity , Algorithms , Animals , Data Interpretation, Statistical , Endpoint Determination , European Union , Forecasting , Humans , Legislation as Topic , Lethal Dose 50 , Quantitative Structure-Activity Relationship , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL